• ベストアンサー
  • すぐに回答を!

極限の問題について質問です

極限の問題について質問です 教科書のロピタルの定理のセクションに載っていた問題です。 lim[x→0] ((1+x)^(1/x)-e)/x という極限を求めるのですが、答えは-e/2で、いくつかの参考書で確認しました。 しかし、どれも答えだけしかのっていないので、解き方がわからない状態です。 ロピタルの定理を使って分母分子を微分してみるのですが、何度ロピタルを使っても不定形になってしまい、 いつまでも答えの値がでないのです。 他になにか解き方が有るのでしょうか?ぜひ教えて下さい。 よろしくお願いします。

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数21
  • ありがとう数1

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
  • info22_
  • ベストアンサー率67% (2650/3922)

A=lim[x→0] ((1+x)^(1/x)-e)/x =lim[x→0] ((1+x)^(1/x))'/1 (ロピタル適用) =lim[x→0] {(1+x)^(1/x)}{x/(x+1)-log(x+1)}/x^2 =lim[x→0] {(1+x)^(1/x)}*lim[x→0]{x/(x+1)-log(x+1)}/x^2 e≡lim[x→0] {(1+x)^(1/x)}(eの定義)なので A=e*lim[x→0]{x/(x+1)-log(x+1)}/x^2 =e*lim[x→0]{1/(x+1)-x/(x+1)^2-1/(x+1)}/(2x) (ロピタル適用) =e*lim[x→0]{-x/(x+1)^2}/(2x) =e*lim[x→0]{-1/(x+1)^2}/2 =e*(-1/2)=-e/2

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 極限値が存在する場合

    以下の問いの解答がなく、自分の解き方が正しいのか不安ですので、確認していただきたく思います。 [問い] 極限値lim(X→0) (expX-aX-b)/X**2が存在するような定数a, bを求めよ。 [my答案] 分母のX2乗はゼロになるので、分子もゼロとなり、不定形になると思いました。そしてロピタルの定理を適用しました。 ・分子もゼロになるので、Xにゼロを代入するとb=1 ・次にロピタルの定理をてきようするため、分母と分子をそれぞれxで微分する。lim(X→0) (expX-a)/2X =1/2 lim(X→0) (expX-a)/X ここで公式lim(X→0) (expX-1)/X =1を適用する。 するとa=1となる。 以上より、答えはa=1, b=1になると思います。 これで大丈夫でしょうか。 よろしくお願いいたします。

  • ロピタルの定理を使って…

    lim (1/4)x*e^(-4x) x→∞ の極限の求め方が分かりません。 ロピタルの定理を使えばいいというのを聞いたことがありますが、うまく行かないのです。 私が考えたのは (1/4)x*e^(-4x)=e^(-4x)/{4/x} という形に直してロピタルを使おうとしたのでが、分母分子をそれぞれ別個に微分して -4e^(-4x)/{-4/x^2} としてみましたが、やはりうまく行きそうにありません。 どなたか教えてください。よろしくお願いします。

  • 比の極限

    ある関数f(x),g(x)を考え、いずれも x->inf のとき0に収束するとします。 このとき、f(x)/g(x)の極限は不定形になるのですが、ある定数に収束しそうなとき、 証明方法として、ロピタルの定理以外に何かありますか? 分母分子を何度微分しても、不定形になるので、それ以外で何かしら証明する パターン的なものがあれば、ご教示ください。 お願いいたします。

  • 極限値

    こんにちは。今、極限値の勉強をしているのですが、いくつか不明な点があるので質問させて下さい。 まず、lim tan^-1*X/X の解き方の仮定を教えてください。      x→0 次に、x→+0はプラスがつく事により、問題の解き方の仮定でただの0とどう変わるんでしょうか。 最後に不定形の極限値はロピタルの定理を用いると簡単に解けますが、ただの極限値か、不定形の極限値だと簡単に見分ける方法はないでしょうか。 ご回答お願いします。

  • 極限値と不定形

    こんにちは。高校数学2の極限に関する質問です。 参考書の問題です。 Q:次の等式が成り立つように、定数a,bの値を求めよ。   lim{(x^2+ax+b)/(x-2)} =5   x→2 A:x→2のとき 分母→0   極限をもつためには、分子→0でなければならない。   …   この問題は4+2a+b=0とし、b=-2aー4と仮定し、   lim{(x^2+ax+b)/(x-2)} =lim(x+a+2)=5    x→2              x→2  とし、2+a+2=5とし、a=1、b=-6 を求めます。 ーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー x→2のとき 分母→0   極限をもつためには、分子→0でなければならない。  ここで質問ですが、↑不定形の問題ということですがなぜでしょう(?) よろしくお願いします。

  • ロピタルでも解けない?極限lim[x→0](e^tanx-e^x)/(e^sinx-e^x)

    極限 lim[x→0](e^tanx-e^x)/(e^sinx-e^x) を求めたいのですが、0/0型となります。 ロピタルの定理を用いて、分母分子をそれぞれ微分しようとしても、逆にややこしい式になります。 どのようにすれば解けるでしょうか?

  • 極限値の問題がよく分かりません・・・

    極限値の問題では(lim)どの時点で答えと決定してよいのか分かりません・・。何も変化させないままlimの下の数字を代入して、0/0ならロピタルの定理などを使って、答えを導くというのはなんとなく分かるのですが、何も変化させないままlimの下の数字を代入して、0/1や1/0になる時はそのまま答えを0として良いのでしょうか? (説明が下手でスイマセン・・・) また、 lim(X→0)X・logX の出し方が分かりません。 上の疑問と同じで、X・logXを何も変化しないまま0に近づけると(代入すると)答えは0になりますが、そのまま答えにして良いのでしょうか? それとも、logX/(1/X)に変化し、ロピタルの定理を使い、0と導くのでしょうか? どこで変化または微分(ロピタルの場合)をストップさせていいのかが、よく分かりません。 誰か教えて頂けないでしょうか? お願いします!

  • 極限の問題

    lim[x→0]{(3^x+5^x)/2}^(1/x)を求める問題です。 ロピタルの定理で分子分母を微分しようにも複雑すぎます。 解放を教えて頂ければ幸いです。 よろしくお願いします。

  • 極限の考え方<ロピタルの定理を使う>

    ロピタルの定理を使う場合の極限の求め方(考え方)について教えください。 (1)lim[x→+∞](3x^2-x+1)/(x^2+5x+1) =lim[x→+∞](6x-1)/(2x+5) =lim[x→+∞]6/2=3 これは何故2回微分するのでしょうか? lim[x→+∞]これが、∞ではなく、0や1に変わると、やり方が違ってくるのでしょうか? (2)lim[x→0](e^x-1)/x =lim[x→0](e^x)/1=1 これは2段目で分母を微分しているのがわかりますが、分子も微分してe^xになったのでしょうか? そしてまた、何故最後に1になるのでしょうか? それと(1)の質問と重複しますが lim[x→0]これが、0ではなく、1や∞に変わると、やり方が違ってくるのでしょうか?

  • ロピタルの定理の問題が分かりません。(2)

    またロピタルの定理でつまずいてしまいました。 ロピタルの定理を用いて、次の不定形の極限値を求めよ。 (1)lim(x->+0)x/(x^x)-1 (2)lim(x->0)[{(1+x)^1/x}-e]/x という問題です。答えはそれぞれ、 (1)0 (2)-e/2 となるそうですが、計算過程がわかりません。 どなたか教えてください。

専門家に質問してみよう