PAM123 の回答履歴
- 運動方程式と統計力学
ニュートンの運動方程式とハミルトンの運動方程式は数学的には等値です。ここで疑問に思ったのですが、ニュートンの運動方程式だけで統計力学を構成できるのでしょうか?自分の乏しい知識ではハミルトンの運動方程式にしか位相空間や状態量といった概念ないので、ニュートンの運動方程式からは無理ではないかといいた気がするのですが。
- ベストアンサー
- noname#70507
- 物理学
- 回答数6
- カノニカル分布
統計力学を復習しているのですが疑問があります。カノニカル分布は熱浴中の(透熱で物質を通さない)系について考えるのですが、熱浴を温度一定の孤立系と考えるとします。このとき、熱浴は孤立系なのでミクロカノニカル分布が適用されることになります。 (1)それなら、カノニカル分布はミクロカノニカル分布の一部と考えてよいのでしょうか。(平衡状態なら熱浴の温度はどこも一定になるので) (2)またミクロカノニカル分布はエネルギー一定のアンサンブル平均を考えていますが、それならカノニカル分布は時間平均を考えることになるのでしょうか。 (3)カノニカル分布は熱浴に比べて十分小さいと考えています。でも平衡状態なら、カロニカル分布で求めた物理量は系のどこでもおんなじになります。それならカロニカル分布は系のいたるところで成立しているから、系全体にカロニカル分布を適用できないのでしょうか。 解説よろしくお願いします。
- ベストアンサー
- noname#70507
- 物理学
- 回答数12
- カノニカル分布
統計力学を復習しているのですが疑問があります。カノニカル分布は熱浴中の(透熱で物質を通さない)系について考えるのですが、熱浴を温度一定の孤立系と考えるとします。このとき、熱浴は孤立系なのでミクロカノニカル分布が適用されることになります。 (1)それなら、カノニカル分布はミクロカノニカル分布の一部と考えてよいのでしょうか。(平衡状態なら熱浴の温度はどこも一定になるので) (2)またミクロカノニカル分布はエネルギー一定のアンサンブル平均を考えていますが、それならカノニカル分布は時間平均を考えることになるのでしょうか。 (3)カノニカル分布は熱浴に比べて十分小さいと考えています。でも平衡状態なら、カロニカル分布で求めた物理量は系のどこでもおんなじになります。それならカロニカル分布は系のいたるところで成立しているから、系全体にカロニカル分布を適用できないのでしょうか。 解説よろしくお願いします。
- ベストアンサー
- noname#70507
- 物理学
- 回答数12
- カノニカル分布
統計力学を復習しているのですが疑問があります。カノニカル分布は熱浴中の(透熱で物質を通さない)系について考えるのですが、熱浴を温度一定の孤立系と考えるとします。このとき、熱浴は孤立系なのでミクロカノニカル分布が適用されることになります。 (1)それなら、カノニカル分布はミクロカノニカル分布の一部と考えてよいのでしょうか。(平衡状態なら熱浴の温度はどこも一定になるので) (2)またミクロカノニカル分布はエネルギー一定のアンサンブル平均を考えていますが、それならカノニカル分布は時間平均を考えることになるのでしょうか。 (3)カノニカル分布は熱浴に比べて十分小さいと考えています。でも平衡状態なら、カロニカル分布で求めた物理量は系のどこでもおんなじになります。それならカロニカル分布は系のいたるところで成立しているから、系全体にカロニカル分布を適用できないのでしょうか。 解説よろしくお願いします。
- ベストアンサー
- noname#70507
- 物理学
- 回答数12
- カノニカル分布
統計力学を復習しているのですが疑問があります。カノニカル分布は熱浴中の(透熱で物質を通さない)系について考えるのですが、熱浴を温度一定の孤立系と考えるとします。このとき、熱浴は孤立系なのでミクロカノニカル分布が適用されることになります。 (1)それなら、カノニカル分布はミクロカノニカル分布の一部と考えてよいのでしょうか。(平衡状態なら熱浴の温度はどこも一定になるので) (2)またミクロカノニカル分布はエネルギー一定のアンサンブル平均を考えていますが、それならカノニカル分布は時間平均を考えることになるのでしょうか。 (3)カノニカル分布は熱浴に比べて十分小さいと考えています。でも平衡状態なら、カロニカル分布で求めた物理量は系のどこでもおんなじになります。それならカロニカル分布は系のいたるところで成立しているから、系全体にカロニカル分布を適用できないのでしょうか。 解説よろしくお願いします。
- ベストアンサー
- noname#70507
- 物理学
- 回答数12
- カノニカル分布
統計力学を復習しているのですが疑問があります。カノニカル分布は熱浴中の(透熱で物質を通さない)系について考えるのですが、熱浴を温度一定の孤立系と考えるとします。このとき、熱浴は孤立系なのでミクロカノニカル分布が適用されることになります。 (1)それなら、カノニカル分布はミクロカノニカル分布の一部と考えてよいのでしょうか。(平衡状態なら熱浴の温度はどこも一定になるので) (2)またミクロカノニカル分布はエネルギー一定のアンサンブル平均を考えていますが、それならカノニカル分布は時間平均を考えることになるのでしょうか。 (3)カノニカル分布は熱浴に比べて十分小さいと考えています。でも平衡状態なら、カロニカル分布で求めた物理量は系のどこでもおんなじになります。それならカロニカル分布は系のいたるところで成立しているから、系全体にカロニカル分布を適用できないのでしょうか。 解説よろしくお願いします。
- ベストアンサー
- noname#70507
- 物理学
- 回答数12
- エントロピー減少の物理学的説明は?
生物を構成している物質系では、エントロピーが減少していると思うのですが、本来、物質界ではエントロピーは増大するはずなのに、生物系においてはエントロピーが減少するという奇妙な減少を、「物理学」では、どのように説明しているのでしょうか? 単に、確率的に非常に起こりがたいことが起こっているのだという説明だけでしょうか? それとも、何らかの積極的な理由の説明があるのでしょうか?
- エントロピー減少の物理学的説明は?
生物を構成している物質系では、エントロピーが減少していると思うのですが、本来、物質界ではエントロピーは増大するはずなのに、生物系においてはエントロピーが減少するという奇妙な減少を、「物理学」では、どのように説明しているのでしょうか? 単に、確率的に非常に起こりがたいことが起こっているのだという説明だけでしょうか? それとも、何らかの積極的な理由の説明があるのでしょうか?
- カノニカル分布
統計力学を復習しているのですが疑問があります。カノニカル分布は熱浴中の(透熱で物質を通さない)系について考えるのですが、熱浴を温度一定の孤立系と考えるとします。このとき、熱浴は孤立系なのでミクロカノニカル分布が適用されることになります。 (1)それなら、カノニカル分布はミクロカノニカル分布の一部と考えてよいのでしょうか。(平衡状態なら熱浴の温度はどこも一定になるので) (2)またミクロカノニカル分布はエネルギー一定のアンサンブル平均を考えていますが、それならカノニカル分布は時間平均を考えることになるのでしょうか。 (3)カノニカル分布は熱浴に比べて十分小さいと考えています。でも平衡状態なら、カロニカル分布で求めた物理量は系のどこでもおんなじになります。それならカロニカル分布は系のいたるところで成立しているから、系全体にカロニカル分布を適用できないのでしょうか。 解説よろしくお願いします。
- ベストアンサー
- noname#70507
- 物理学
- 回答数12
- 運動方程式と統計力学
ニュートンの運動方程式とハミルトンの運動方程式は数学的には等値です。ここで疑問に思ったのですが、ニュートンの運動方程式だけで統計力学を構成できるのでしょうか?自分の乏しい知識ではハミルトンの運動方程式にしか位相空間や状態量といった概念ないので、ニュートンの運動方程式からは無理ではないかといいた気がするのですが。
- ベストアンサー
- noname#70507
- 物理学
- 回答数6
- 運動方程式と統計力学
ニュートンの運動方程式とハミルトンの運動方程式は数学的には等値です。ここで疑問に思ったのですが、ニュートンの運動方程式だけで統計力学を構成できるのでしょうか?自分の乏しい知識ではハミルトンの運動方程式にしか位相空間や状態量といった概念ないので、ニュートンの運動方程式からは無理ではないかといいた気がするのですが。
- ベストアンサー
- noname#70507
- 物理学
- 回答数6
- (量子力学)密度行列は実対称行列ですか?
密度行列が実対称行列かどうかで悩んでいます。 [参考URL] http://militzer.gl.ciw.edu/diss/node13.html 一番簡単な密度行列の例を考えます。 rho(x;y) = <psi(x)|psi(y)> psi(x)は多体波動関数とします。 ここで、例えば上記URLのサイトには、「任意のエルミートなハミルトニアンに対しては、rho(x;y)=rho(y;x)である」とかかれています。 しかし、rho(x;y)=rho(y;x)であるためには、密度行列が実対称行列である必要があるように見えます。 <psi(x)|psi(y)>=<psi(y)|psi(x)>であるためには、<psi(x)|psi(y)>は実数でなければならないからです。 このような表記は他の論文にも見られまして、かの有名なkohnさんの論文Phys Rev Lett 76 3168(http://prola.aps.org/pdf/PRL/v76/i17/p3168_1)の2ページ目第8式に同様の記述があります。 密度行列ははたして実対称行列なのでしょうか? なお、孤立系の様に波動関数が実数のみで表現できてしまう場合は除きます。三次元周期系のような場合を考えています。 よろしくお願いします。
- (量子力学)密度行列は実対称行列ですか?
密度行列が実対称行列かどうかで悩んでいます。 [参考URL] http://militzer.gl.ciw.edu/diss/node13.html 一番簡単な密度行列の例を考えます。 rho(x;y) = <psi(x)|psi(y)> psi(x)は多体波動関数とします。 ここで、例えば上記URLのサイトには、「任意のエルミートなハミルトニアンに対しては、rho(x;y)=rho(y;x)である」とかかれています。 しかし、rho(x;y)=rho(y;x)であるためには、密度行列が実対称行列である必要があるように見えます。 <psi(x)|psi(y)>=<psi(y)|psi(x)>であるためには、<psi(x)|psi(y)>は実数でなければならないからです。 このような表記は他の論文にも見られまして、かの有名なkohnさんの論文Phys Rev Lett 76 3168(http://prola.aps.org/pdf/PRL/v76/i17/p3168_1)の2ページ目第8式に同様の記述があります。 密度行列ははたして実対称行列なのでしょうか? なお、孤立系の様に波動関数が実数のみで表現できてしまう場合は除きます。三次元周期系のような場合を考えています。 よろしくお願いします。
- 運動方程式と統計力学
ニュートンの運動方程式とハミルトンの運動方程式は数学的には等値です。ここで疑問に思ったのですが、ニュートンの運動方程式だけで統計力学を構成できるのでしょうか?自分の乏しい知識ではハミルトンの運動方程式にしか位相空間や状態量といった概念ないので、ニュートンの運動方程式からは無理ではないかといいた気がするのですが。
- ベストアンサー
- noname#70507
- 物理学
- 回答数6
- (量子力学)密度行列は実対称行列ですか?
密度行列が実対称行列かどうかで悩んでいます。 [参考URL] http://militzer.gl.ciw.edu/diss/node13.html 一番簡単な密度行列の例を考えます。 rho(x;y) = <psi(x)|psi(y)> psi(x)は多体波動関数とします。 ここで、例えば上記URLのサイトには、「任意のエルミートなハミルトニアンに対しては、rho(x;y)=rho(y;x)である」とかかれています。 しかし、rho(x;y)=rho(y;x)であるためには、密度行列が実対称行列である必要があるように見えます。 <psi(x)|psi(y)>=<psi(y)|psi(x)>であるためには、<psi(x)|psi(y)>は実数でなければならないからです。 このような表記は他の論文にも見られまして、かの有名なkohnさんの論文Phys Rev Lett 76 3168(http://prola.aps.org/pdf/PRL/v76/i17/p3168_1)の2ページ目第8式に同様の記述があります。 密度行列ははたして実対称行列なのでしょうか? なお、孤立系の様に波動関数が実数のみで表現できてしまう場合は除きます。三次元周期系のような場合を考えています。 よろしくお願いします。
- (量子力学)密度行列は実対称行列ですか?
密度行列が実対称行列かどうかで悩んでいます。 [参考URL] http://militzer.gl.ciw.edu/diss/node13.html 一番簡単な密度行列の例を考えます。 rho(x;y) = <psi(x)|psi(y)> psi(x)は多体波動関数とします。 ここで、例えば上記URLのサイトには、「任意のエルミートなハミルトニアンに対しては、rho(x;y)=rho(y;x)である」とかかれています。 しかし、rho(x;y)=rho(y;x)であるためには、密度行列が実対称行列である必要があるように見えます。 <psi(x)|psi(y)>=<psi(y)|psi(x)>であるためには、<psi(x)|psi(y)>は実数でなければならないからです。 このような表記は他の論文にも見られまして、かの有名なkohnさんの論文Phys Rev Lett 76 3168(http://prola.aps.org/pdf/PRL/v76/i17/p3168_1)の2ページ目第8式に同様の記述があります。 密度行列ははたして実対称行列なのでしょうか? なお、孤立系の様に波動関数が実数のみで表現できてしまう場合は除きます。三次元周期系のような場合を考えています。 よろしくお願いします。
- ネピア e は 日常生活でどんな関係があるのか
何回も数学書を読んでもまったく分かりません。 グラフでY=a^(x)や接線だの、三角形の底辺だの言われてもまったく理解できなかった。 たぶん、日常生活とのかかわりがわからないからかも。 そこで、この e という概念が 具体的に どのように この社会を助けているのか、5個くらい例を挙げて教えていただけないでしょうか? 今、自然対数というものについて、理解しようとしていますが、助けてください -------
- Taylor展開の近似
taylor展開の近似においてsin(1)の値を求めることを考えたとき、 小数点以下10桁まで正確に求めるためには何次の多項式で近似を行えばいいでしょうか?
- フェルミ粒子と波動関数
フェルミ粒子の波動関数はスレーター行列式で表されますが、これは波動関数の固有状態の積の形の線形結合で表されています。これはフェルミ粒子間の相互作用がない場合にしか成立しないと思うのですが、相互作用がある場合も成立するのでしょうか?
- ベストアンサー
- noname#70507
- 物理学
- 回答数4