検索結果
1階微分方程式
- 全てのカテゴリ
- 全ての質問
- 変数分離法を用いて式の導き方を教えてください。
dl/dx=-kclからl(x)=l(0)exp(-kcl)をみちびきたいのですが、途中でわからなくなってしまったので、教えてください。 dl/dx=--kcl df(x)/dx=f(x)(1-f(x))より dl/dx=--kcl(1+kcl) dl/-kcl(1+kcl)=dx 両辺を積分して ∫dl/-kcl(1+kcl)=∫dx となる。 これを部分因数分解して ∫(1/-kcl+1/1+kcl)dl=∫dx ここから先の導き方の続きがわからないです。教えてください。 最終的にはl(x)=l(0)exp(-kcl)に導きたいです。よろしくお願いします。
- コンデンサの問題
電気回路の問題です。 回路は直流電源E,、抵抗R、コンデンサC_1からなる直列回路であり、コンデンサC_1の部分にスイッチとコンデンサC_2が並列に接続さているといった回路です。 初期状態でコンデンサC_1には電圧Eが充電されているとします。t=0でスイッチを閉じたとき、コンデンサC_1とC_2の端子電圧およびRに流れる電流を求めよいう問題です。 これを解くためにコンデンサC_1に流れる電流をi_1、C_2にながれる電流をi_2として回路方程式を2本立ててみました。 E=R(i_1+i_2)+1/c∫i_1dt+E E=R(i_1+i_2)+1/c∫i_2dt この回路方程式を解こうとしているのですが、うまく解けません。 そもそもこの回路方程式で正しいのでしょうか? 解法を示していただけると幸いです。 ちなみにラプラス変換は未履修ですので、微分方程式を解くことになると思います。
- ベストアンサー
- 物理学
- exymezxy09
- 回答数4
- 微分方程式の解法を教えてください
次の問題の解法が分かる方、ご教授お願いします。可能ならば、何形の微分方程式かも添えていただけると幸いです。 1問だけでも構いませんので、宜しくお願いします。
- ベストアンサー
- 数学・算数
- Timper1912
- 回答数4
- 微分方程式、特性多項式、特性根、基本階、特殊解
次の問題のやり方がわからなくて困っています。 次の微分方程式を特性多項式、特性根、基本階、特殊解を求めて解け。 (d^2y/dx^2)-(5dy/dx)+6y=3e^3x わかる方ぜひ解答お願いします。
- 締切済み
- 数学・算数
- ISLAND0109
- 回答数1
- 微分方程式が解けません
次の問題がどうしても解けません。 解き方のヒントを教えていただけないでしょうか。 また、今まで「特解」は非斉次微分方程式にしか出てこないと思っていたのですが、 この場合の「特解」とは何のことなのでしょうか。 特解y=xをもつ下記の微分方程式の一般解を求めよ。 (x^2 - 1)y'' - 2xy' + 2y = 0
- ベストアンサー
- 数学・算数
- ishikawaken
- 回答数3
- 微分方程式で、y=u・exp(-ax)とやるのって
y''+ay'=…の形の微分方程式を解くときに y=u・exp(-ax)と置きますが、一般性を失わないのでしょうか? 見れば明らかなのかもしれませんが、 解がy=ax+bだったりy=exp(-ax)+bだったりする可能性を 最初から捨ててしまっているようで、疑問を感じます。 y=ax+bのときは、u=(ax+b)exp(ax)が出るから大丈夫 ということなんでしょうか?
- 物理
物理力学の問題 図のような質量が4mと3mの質点が自然長lのばね(バネ定数k)によって 水平なX軸上を振動しながら動いている。相対座標をxとする。 1相対運動の運動方程式をあたえ、各振動数ωをもとめよ 2t-=0 x=l/2 dx/dt=l/2ω のとき 解 x(t)=l+Acosωt+Bsinωt の未知数A,B,を求めよ 3 相対座標をx、 相対速度をvとして任意の時間における相対運動エネルギー保存則を与えよ
- 締切済み
- 物理学
- task19910124
- 回答数1
- f(x)+∫f(t)=sinxのときf(x)は?
関数f(x)は微分可能でf(x)は連続としf(x)は関係式 f(x)+∫[0~x]f(t)=sinx の式を満たしている。という問題です。(1)~(4)は解けたつもりです。しかし。 (1)f(x)+f´(x)の関係式は?――――f(x)+f´(x)=cosx (2)(d/dt)f(x)e^xを求めよ。――――(d/dt)f(x)e^{x}=e^{x}(f(x)+f´(x))=e^{x}cosx (3)∫[0~x]e^{t}(sint+cost)=∫[0~x]e^{t}(sint-cost)+e^{x}(sinx+cosx)-1の証明 (4)∫[0~x]e^{t}costを求めよ。――――∫[0~x]e^{t}cost=[e^{x}(sinx+cosx)-1]/2 (5)f(x)は? という問題です。(1)~(4)は解けたつもりです。しかし(5)が解けません。(1)~(4)をどう使えばいいの?
- 微分方程式
(1)x>0でx^2y''+xy'-y=0(*)という問題でy=xが解であることを求めたのですが、yと独立な微分方程式(*)の解が求められません。 (2)x^2(d^2y/dx^2)-2y=0の解き方をいろいろ調べて試したのですがどうしても解けません。 この二点について途中式等詳しく教えていただけないでしょうか?お願いします。
- ベストアンサー
- 数学・算数
- 3553goemon
- 回答数5
- 初期条件のない微分方程式
d^2y/dx^2 - 5dy/dx+6y=x^2 これの一般解を求めよ。特解はy=ax^2+bx+c (a、b、c)定数の形である。 このような問題を聞かれたのですが 「初期値」とか「条件」って(条件:x=0のとき、y=1, dy/dx=1 など)なくても解けるんですか? はじめて見たので「え!?」ってなってる形なんですけど どなたか解き方を教えてください。
- ベストアンサー
- 数学・算数
- belete0306
- 回答数1
- 波動方程式の解について
電磁気学についての質問ですが、 平面はのTEモードの波動方程式 δ^2 Hz/δx^2 - δ^2 Hz/δy^2 + k^2 Hz = 0 (_は下つき文字 ^は上付き文字) の解が Hz = H_0 exp(-jk sinθx + jk cosθy) となっているのですが、途中の導出方法がわかりません。 Webで調べると変数分離を使うところまではわかりましたが、これだと、三角関数の形で答えが出てきますが、 どうして、指数関数の形で解がでるのかを教えてください。
- 二次方程式? 2次方程式?
二次方程式、2次方程式どちらの書き方が正しいのでしょうか? みなさんは数学の証明の際、漢数字とアラビア数字をどう使い分けていらしゃっいますか?
- ベストアンサー
- 数学・算数
- bluemoon1120
- 回答数1
- FEM有限要素法について
物理シミュレーション手法の1つのFEMについてお尋ねします。 ※いつもは差分法を用いて計算をしている人間からみた漠然とした感覚での質問です。 1.FEMの基本的な考え方は内挿関数(いろいろ名称がありますが)を使って節点上で定義された未知数を領域内部に連続的に展開し、方程式(重み関数をかけて)を領域内部で積分するという展開になると思います(がラーキン法)。このとき部分積分を用いて弱形式に変換したりするわけですが、この部分積分は紙と鉛筆を使って数学理論的に実施するものなのでしょうか。もともと解く方程式の複雑さによってはなかなか難しいのではないかと思いますが。どのような場合でもできるのでしょうか。 (差分だと3回微分でも何とかやることができそうです。もちろん困難もありますが見通しはつきやすい。) 2.自然境界条件(境界での微分値が指定されている)ところの説明でも部分積分が出てきます。自然境界条件の設定の考え方のコツを教えて頂きたいのですが。本を読むとポテンシャル理論を使う実例が示されていたりしており、ポテンシャル問題でない場合はどうするのかなと思います。 基本境界条件(境界での値が指定されている)についてはマトリックスの一部に000010000など使うと問題なく指定できます。これはすごくわかりやすいのですが。 3.FEMはラプラス方程式、ポアソン方程式、などよく知られた割りと形式的に簡単に見える方程式の説明が多いのですが、微分の回数が増えるとか自分で式を作ったような場合実行するのが難しいものでしょうか。前述しましたが、3回微分の場合、1回積分して2回微分になるから内挿関数が直線的だと2回微分がゼロとなりますから使えないということになりそうです。差分とはだいぶ違うな思います。解きやすい問題は行列にしたら差分と同じということになるようですが。 以上、よろしくお願いします。漠然とした質問と言いながら長くなってしまいました。
- 締切済み
- 情報工学
- skmsk19410
- 回答数2
- 回転するパイプの中にある球の運動
図はパイプの断面図です。 x軸は常にパイプと平行です。 パイプが回転すると、x軸も回転しますあす。 y軸はx軸に垂直です。 原点は回転軸の点です。 パイプの回転軸は水色の点です。 球の質量はMとしてください。 静止している人から見たときのことです。 ここで質問です。 1、パイプの中にある球は回転軸から外側に向かって加速していく時、球がx方向の位置rの時の速度v(x方向成分)を教えてください。ただし、摩擦係数はμとしてください。 2、ある時間tで進む球の距離を教えてください。ただし、x方向のみの距離だけでお願いします。
- 多自由度の振動について
現在、自由振動について勉強しています。 そのなかで、よくわからなかったところがありまして、 http://mechanics.civil.tohoku.ac.jp/~bear/nisikozo/s4node3.html にある、(10.80)でωの4次式が出てきます。その下に、 ω>0の解しか意味がないから とありますが、どうしてなのでしょうか? また、(10.88)から作った4次式も、ω>0の解しか意味を持たないのでしょうか? ご教授よろしくお願いします。
- 締切済み
- 物理学
- noname#258949
- 回答数2