検索結果
微分
- 全てのカテゴリ
- 全ての質問
- 数学 微分 問題
次の関数のx=1における微分係数f(1)を定義から計算せよ。 (1)f(x)=3x+1 微分に対してまだ初心者なんでよく分からないのですが、 f(a)=lim{f(a+h)ーf(a)}/hという公式に当てはめていけばいいんでしょうか? h→0
- ベストアンサー
- 数学・算数
- okadayukiko
- 回答数1
- 微分方程式
m*dv/dt+mvν=eE (初期条件t=0のときv=0) 記号の読みv(ブイ),ν(ニュー)である。 この微分方程式の解き方を教えて下さい。
- ベストアンサー
- 数学・算数
- pawafurukana
- 回答数3
- 微分方程式
y'=(4x^2+xy+y^2)/x^2 , y(1)=0 を解いたら y=2xtan(logx^2+C)となり, y=2xtan(logx^2)となりました.合ってますか? また確かめようと思ったんですがtan(logx^2)の微分がわかりませんでした.どうやるんですか? またもし初期値がなく微分方程式を解くだけならy=2xtan(logx^2+C)をy=2xtan(log(x^2・C))とやってもいいのでしょうか? だめならなぜlogx^2+C=logx^2+logC’=log(x^2・C’)とやってはいけないのでしょうか?
- 微分方程式
(1)x>0でx^2y''+xy'-y=0(*)という問題でy=xが解であることを求めたのですが、yと独立な微分方程式(*)の解が求められません。 (2)x^2(d^2y/dx^2)-2y=0の解き方をいろいろ調べて試したのですがどうしても解けません。 この二点について途中式等詳しく教えていただけないでしょうか?お願いします。
- ベストアンサー
- 数学・算数
- 3553goemon
- 回答数5
- 微分方程式
練習問題を解いてみたのですが、あっているかどうかわからないので見てもらえないでしょうか? 個人的には出てきた答えが胡散臭い気がするのですが… 微分方程式 1+xp^2-tp^3=0,(p=dx/dt)を解け。 両辺tで微分して整理しますと (3xp-3tp^2)(dp/dt)=0…(1) また 1+xp^2-tp^3=0 より、p=0だから xp=tp^2-(1/p)…(2) (1),(2)からxを消去して (tp^3+2)(dp/dt)=0 が得られます。 ⅰ)tp^3+2=0のとき p^3=-2/t より p=(-2)^(1/3)*t^(-1/3) 問題で与えられた微分方程式に代入して整理すると (-2)^(2/3)*xt^(-2/3)+3=0 これは特異解でしょうか? ⅱ)dp/dt=0 のとき p=c, cは定数。 問題で与えられた方程式に代入して 1+(c^2)x-(c^3)t=0 これは一般解でしょうか? さて、答えが胡散臭いと思った理由ですが、一般解をパラメーターで微分した式と一般解の式からパラメーターcを消去すると特異解が得られるはずですが、わたしが計算した限りそうなってくれないからです。 どなたかご教授お願いします。
