e_o_mのプロフィール

@e_o_m e_o_m
ありがとう数44
質問数2
回答数78
ベストアンサー数
30
ベストアンサー率
58%
お礼率
100%

物理工学を専攻している大学院生です。

  • 登録日2009/01/28
  • 職業学生
  • 都道府県東京都
  • 数学の問題

    番号を付けた6枚の札が1,2,3,4,5,6があり、最初はすべて表を向いている。 サイコロを振って偶数が出るごとに、偶数番の札をすべて裏返す(偶数回偶数が出れば゛偶数番の札は元に戻る) サイコロを振って奇数が出れば、出た目と同じ番号の札のみを裏返す。ただし、奇数番の札は一度裏返ればそのままとし、再び表を向くことはない。 サイコロを5回振って、札がすべて裏向く確率を求めよ。 この問題で解答は1,3,5のうち1つが2回、他の2つが各1回、偶数の目が1回出る場合である。 目の出る順序は5!/2!で……。と続いていますが、なぜ分母に2!がくるのでしょうか。 確率では同じものでも区別して考えるのではないのですか。 詳しく教えていただきたいです。 よろしくお願い致します

  • 行列の問題

    次の連立方程式が自明な解(x=0かつy=0)以外の解を持つように kの値を決めよ。また、その値を代入した時の、自明な解以外の解を一組求めよ。 2x+3y=0 kx+2y=0 と言う問題なのですが、 自明な解以外の解を持つ必要十分条件が|A-λE|=0 なので |(2-λ) 3 | | k (2-λ)| =(2-λ)^2 -3k =4-4k+λ^2-3k =0 となるkを求めればいいかなと思ったのですが、 ここからどうすればkを出せるのかわかりません。 やり方が違うのでしょうか?お願いします。

  • 量子力学(角運動量の固有状態について)の問題

    こんにちわ。 量子力学の問題で分からなかったところがあるので質問させてください。 最初に問題を載せておきます。 問題 今考えているp状態の固有関数が, ψ=f(r)cosθ=f'(r)rcosθ=f'(r)z と表せるとすると,この関数がLzの固有状態にはなっているが,Lx及びLyの固有状態にはなっていないことを示せ。但し,Lx,Ly,Lzは以下のようにあらわせるとする。 Lx=yp_z-zp_y=-ih(y*d/dz-z*d/dy) Lx=zp_x-xp_z=-ih(z*d/dx-x*d/dz) Lz=xp_y-yp_x=-ih(x*d/dy-y*d/dx) ※p_x,p_y,p_xは運動量pのx,y,z成分,微分(d/dxなど)は本当は偏微分です。見づらくてすみません という問題です。 固有状態になっていることを示すのだから,Lzにψ=f'(r)zを代入して求めればよさそうに思ったのですが,固有関数の具体的な関数が分かっていないし,どうしていいのかわかりません。ちなみに球座標に変換しなくても解けるみたいなことを言われました。 考え方だけでも教えていただけると嬉しいです。よろしくお願いします。

  • 量子力学(角運動量の固有状態について)の問題

    こんにちわ。 量子力学の問題で分からなかったところがあるので質問させてください。 最初に問題を載せておきます。 問題 今考えているp状態の固有関数が, ψ=f(r)cosθ=f'(r)rcosθ=f'(r)z と表せるとすると,この関数がLzの固有状態にはなっているが,Lx及びLyの固有状態にはなっていないことを示せ。但し,Lx,Ly,Lzは以下のようにあらわせるとする。 Lx=yp_z-zp_y=-ih(y*d/dz-z*d/dy) Lx=zp_x-xp_z=-ih(z*d/dx-x*d/dz) Lz=xp_y-yp_x=-ih(x*d/dy-y*d/dx) ※p_x,p_y,p_xは運動量pのx,y,z成分,微分(d/dxなど)は本当は偏微分です。見づらくてすみません という問題です。 固有状態になっていることを示すのだから,Lzにψ=f'(r)zを代入して求めればよさそうに思ったのですが,固有関数の具体的な関数が分かっていないし,どうしていいのかわかりません。ちなみに球座標に変換しなくても解けるみたいなことを言われました。 考え方だけでも教えていただけると嬉しいです。よろしくお願いします。

  • ラグランジアンの方程式について

    L=1/2m(l)^2(φ)^2-mgl(1-cosφ) φ≪1の場合の解を求めよ。 この問題の解き方がわかりません。どなたか教えてください。