panasonikiのプロフィール
- ベストアンサー数
- 6
- ベストアンサー率
- 46%
- お礼率
- 0%
- 登録日2014/08/03
- 最小公倍数の教え方
小学5年生の息子に最小公倍数を教えたいのですが、最小公倍数の概念を教えるにあたって、息子にとって興味を持てるような教え方をしたいのですが、ぴったりの例を考えるのが難しく、困っています。 こういう時に最小公倍数を使うと便利、という例があればぜひお教えいただきたいです。 また最大公約数の概念を教えるにあたっても良い例があればお教えください。 どちらか一方でも構いません。 どうぞよろしくお願いいたします。
- ベストアンサー
- marchan2005
- 数学・算数
- 回答数5
- べき級数と正則
Σ[n=1 to ∞]z^n/((-1)^n+(i-1)^n)が収束し、正則となる範囲を求めよという問題がわかりません。どなたか教えていただけないでしょうか?
- 締切済み
- toetoetoe13
- 数学・算数
- 回答数2
- 【フーリエ展開】発散しない理由
関数f(t)のフーリエ変換をF(t)とします。 g(t)=df(t)/dt のとき g(t)のフーリエ変換G(t)をF(t)で表せ、との問題です。 G(t)=∫[-∞,∞] df(t)/dt exp(-iwt) dt の積分を行って計算しようとしました。 そこで、[f(t) exp(-iwt)][-∞,∞]+iw∫[-∞,∞] df(t)/dt exp(-iwt) dt となり、[f(t) exp(-iwt)][-∞,∞]=0より G(t)=iwF(w)と答えを出したいのですが、 [f(t) exp(-iwt)][-∞,∞]=0となることが理解できずに 困っています。この値は発散しませんでしょうか? 数学に詳しい方が居られましたら どうぞよろしくお願い致します。
- ベストアンサー
- geamantannn
- 数学・算数
- 回答数3
- 【フーリエ展開】発散しない理由
関数f(t)のフーリエ変換をF(t)とします。 g(t)=df(t)/dt のとき g(t)のフーリエ変換G(t)をF(t)で表せ、との問題です。 G(t)=∫[-∞,∞] df(t)/dt exp(-iwt) dt の積分を行って計算しようとしました。 そこで、[f(t) exp(-iwt)][-∞,∞]+iw∫[-∞,∞] df(t)/dt exp(-iwt) dt となり、[f(t) exp(-iwt)][-∞,∞]=0より G(t)=iwF(w)と答えを出したいのですが、 [f(t) exp(-iwt)][-∞,∞]=0となることが理解できずに 困っています。この値は発散しませんでしょうか? 数学に詳しい方が居られましたら どうぞよろしくお願い致します。
- ベストアンサー
- geamantannn
- 数学・算数
- 回答数3
- lim[x→∞] F(x)が極限値を持つ条件
数学の参考書に lim[x→∞] F(x)が極限値を持つならば、lim[x→∞] F(x)/x=0が必要 と書いてありましたが、その理由がわかりません。 例えば、lim[x→∞] {(1-a)x -b}=0のためには、lim[x→∞] {(1-a)x -b}/x=0が必要 と書いてありました。いきなり関数をxで割り算をしたものの極限をとるのは何故なのでしょうか? どうぞよろしくお願いします。
- ベストアンサー
- ganbaruzo12
- 数学・算数
- 回答数2