検索結果

微分

全10000件中361~380件表示
  • 全てのカテゴリ
  • 全ての質問
  • 微分積分

    見えにくくてすみません。 この式の変形を教えて頂きたいです。

    • ekrin
    • 回答数1
  • 偏微分・全微分を使った証明

    力学のある問題の証明で困っております。 z(x,y)   zはx,yを変数に持つ関数(式は具体的には指定されていない) x=rcosα-ssinα y=rsinα+scosα  (αは定数) の時 ∂^2z/∂x^2+∂^2z/∂y^2 = ∂^2z/∂r^2+∂^2z/∂s^2 を証明せよ。 (^2は二階微分) です。 全微分を駆使して証明するようなのですが、私のやり方では右辺を展開する途中で ∂^2z/(∂r∂x)cosα+∂^2z/(∂r∂y)sinα-∂^2z/(∂s∂x)sinα+∂^2z/(∂s∂y)cosα が出てきました。(ここまで合ってればいいのですが・・・) そうすると、sinαとcosαの係数にある微分記号の分母∂x,∂yが邪魔で、この先どう変形して良いのかわからず、左辺の式まで持っていけません。 どなたかわかりませんでしょうか? 

  • 微分形式,微分幾何学の参考書

    現在、大学の「幾何学基礎」という授業の中で、微分形式のことをやっています。具体的には、微分積分学の基本定理から、グリーンの定理(ストークスの定理)などの説明を行い、引き戻しの計算などを行っています(幾何学的に)。しかし、先生がどんどん授業を進めていき、なおかつあまり詳しい説明もしないので、正直よく分からなくなっています。 もう少しで、テストなので余計にあせっており、しかも何をやったらよいのかよく分かりません。 そこで、自習用のテキストを購入したいのですが、何かお勧めの参考書はありませんか?(微分積分や線形代数の基本が分かっていれば、分かるような、なるべく分かりやすいものはありませんか?) ちなみに、授業では、テキストは使っていないのですが(指定されていない) 「培風館 曲線・曲面と接続の幾何」(小沢 哲也) 「培風館 曲面の数学」(長野 正) を紹介されました。 また、自分で調べて 「岩波書店 微分形式の幾何学」(森田 茂之) 「裳華房 曲線と曲面の微分幾何」(小林 昭七) という本もよさそうだと思いました。 皆さんは、これらの本についてどのように思いますか? (分かりやすさ,内容,練習問題,レベルなどを総合的に見て) また、これ以外のおすすめの微分形式,微分幾何学の参考書があれば教えてください。(初心者向きで) テストまで、あまり時間がありません。申し訳ありませんがよろしくお願いいたします。

  • 全微分(1次微分の相加性)

    現在偏微分のあたりを勉強中なのですが、 もうすぐ全微分が出てくる!というところで 以下のような記述がありました。 『関数u=u(x,y)の値が(x,y)から(x+Δx,y+Δy)に変わったらどれだけ変わるかを考える。 ここで、Δx,Δyは小さいとし、これらについて1次までu(x+Δx,y+Δy)-u(x,y)を求めることを考える。差を2段に分けて u(x+Δx,y+Δy) - u(x,y+Δy) = ∂u(x,y+Δy)/∂x × Δx u(x,y+Δy) - u(x,y) = ∂u(x,y)/∂y × Δy であるから、辺々足して u(x+Δx,y+Δy) - u(x,y) = ∂u(x,y+Δy)/∂x × Δx + ∂u(x,y)/∂y × Δy ・・・(1) つまり、(x,y)が(x+Δx,y+Δy)に変わるとき、関数u=u(x,y)の増分は、x,yの変化分に関して1次までなら u(x+Δx,y+Δy) - u(x,y) = ∂u(x,y)/∂x × Δx + ∂u(x,y)/∂y × Δy ・・・(2) となる。』 ここで、僕が質問したいのは (1)ここで言う「1次」の意味を教えてください。  「1回微分の話をしている」という意味でしょうか・・・? (2)(1)式から(2)式になる際、  ∂u(x,y+Δy)/∂x = ∂u(x,y)/∂x としているのですが、これはなぜ成り立つのですか?  (以下、自分の考えです)  ∂u(x,y+Δy)/∂x = ∂u(x,y)/∂x  単体でしたらこの等号は納得できるのですが、今は  ∂u(x,y+Δy)/∂x × Δx + ∂u(x,y)/∂y × Δy  というような和を考えていて、  「第二項はあるyについてyで編微分、  第一項はそのyからΔyずれた位置にyを固定してxで編微分」  しているのに、  ∂u(x,y)/∂x × Δx + ∂u(x,y)/∂y × Δy  だと第一項と第二項で、  同じy近傍を考えてしまっているように思います。 どなたかご返答の方よろしくおねがいします。

    • noname#57678
    • 回答数5
  • xで微分 xについて微分

    質問タイトル全文 : xで微分 xについて微分は、どちらもx以外の文字を定数扱いして、xは変数扱いで微分するという意味であってますか?

  • 電流の時間微分、電圧の時間微分

      電磁気学では電流の時間微分di/dt、電圧の時間微分dv/dtがよく出てきますが、これらを表す固有の物理名や量記号はないのでしょうか。 力学では速度の時間微分dv/dtは加速度と呼び量記号aを用い、角速度の時間微分dω/dtは角加速度と呼び量記号αを用いていますね。  

  • 微分と変微分の違いとは

    微分と変微分の違いとはなんなのでしょうか? 関数が一変数だった場合が微分、二変数の場合だったら変微分になるのですか? けれど微分しようと変微分しようと、計算結果は同じですよね? f(x,y)=x^2+3yのとき df/dx=2x ラウンドdf/ラウンドdx=2x また全微分では微分、変微分がごちゃまぜになっていますが、どういうことなのでしょうか?よろしくお願いします。

  • 偏微分、合成関数の微分法

    数学を進めているのですが、偏微分が絡んだ合成関数の微分法がわかりません。 大学数学のテキストは高校のと比べて、読み進めずらいです。助けてください。 (質問本文) 「」は私の理解の仕方と思ってください。まず、公式の理解から私の偏微分の考え方は正しいでしょうか? (1)関数z=f(x、y)にさらにx=x(t)、y=y(t)という関係がある時、「実質1変数で」、dz/dt=(∂z/∂x)×(dx/dt)+(∂z/∂x)×(dx/dt)(「それぞれxとyでzを偏微分して、x、yを今度は1変数なので、微分する」) (2)関数z=f(x、y)にさらにx=x(u,v)、y=y(u,v)という関係がある時,今度は変数が2つuとvがあるので、「どちらか片方で微分して」、∂z/∂u=(∂z/∂x)(∂x/∂u)+(∂z/∂y)(∂z/∂u)(「それぞれ片方の変数x、yでzを微分して(偏微分)さらに、そのx、yを関係式があるuで片方を選んで、uで偏微分する」) 次に、教科書の文章で、f(x、y)=0によって、xの陰関数y=f(x)が定められているとき、y‘=-Fx/Fyをxで微分すると、(dFx/dx)=Fxx+Fyy×dy/dx,dFx/dx=Fyx+Fyy×dy/dx(★)とあるのですが、★の微分はどのように考えて実行しているのでしょうか?(上の教科書の公式では全く上手くいきません)

    • tjag
    • 回答数2
  • 微分と偏微分の問題です

    次の問題が与えられています。 x=a*sin^3t , y=a*cos^3tのとき、dy/dx,d^2y/dx^2、∂y/∂x,∂^2y/∂x^2を求めよ。 まず、微分の方なのですが、xとyをtで微分し、そこから式を進めて、 dy/dx = - sin^3t/cos^3t = -tan^3t が求まりました。 そして、 d^2y/dx^2 = - 1/a*cos^9t が求まりました。 これについて、まず、本当に正しいのかを添削してください。 間違っていましたら、ご解説をお願いします。 そして、偏微分についてですが、これはどのように回答していくのが正しいのでしょうか。 偏微分をよく知らないこともあり、どうやって回答していくべきか悩んでいます。 ご解説をお願いします。 以上、よろしくお願いします。

  • 微分の計算

    S=sin2Θ(1+cos2Θ)のΘでの微分は S'=2(2cos2Θ-1)(cos2Θ+1)であってますか?

  • 数学 微分 問題

    y=5x^3ー7x^2+9x-2のx=1における接線の傾きは□□である □□の中には10が入るみたいなんですが、これはどうしてですか?

  • 数学 微分 問題

    次の関数のx=1における微分係数f(1)を定義から計算せよ。 (1)f(x)=3x+1 微分に対してまだ初心者なんでよく分からないのですが、 f(a)=lim{f(a+h)ーf(a)}/hという公式に当てはめていけばいいんでしょうか?    h→0

  • 微分の疑問

    y=x^2を微分したら2xとかsinxを微分したらcosxとか、よく普通にやっていますが、もしこの関数達の微分する部分が連続性を持たない(y=|x|のx=0など)なら微分不可能ですよね だとしたらこの関数達を微分する部分が連続性を持ってることを示さなければならないということになりますが、どうやれば連続であることを示せるのでしょうか? 直感は数学では通用しないので、示す方法が存在すると思います もしかしたら単純なことかもしれませんが教えてください

    • noname#154702
    • 回答数3
  • 対数微分法

    √1-eの x乗 関数を 対数微分法で 微分せよ この 問題の 途中式と答えを 教えてください。 宜しくお願い致します。

  • 対数微分法

    次の 関数を 対数微分法で 微分せよ √1-eのX乗 宜しくお願いします

  • 積の微分

    y = (x-1){x^(n-1) + x^(n-2) + … + x + 1} (nは自然数) これを積の微分法を使って微分するとnx^(n-1)になるらしいのですが、 うまく計算できません…。 解答の計算過程が省略されていて、わからないので どなたか教えてください。

  • 微分方程式

    y'=1-(y/x)をときたいのですが、 dy/dx=1-(y/x) dy/y=dx/y -dx/x 両辺を積分して log|y|=x/y-log|x| +C y=e^(x/y) /x xy=e^(x/y) となったのですが、解答には y=x/2 -4/xとなっています。 間違いを指摘してもらえますか?

  • 微分方程式

    t≧0で,x = x(t) に関する以下の微分方程式    (dx/dt) + (1/τ)x = (1/τ) cost が成り立つとき,以下の問いに答えよ。ただし,定数τは0ではない実数である。 (1) 微分方程式を解きなさい。ただし,x(0)=0とする。 (2) |τ|= 1 のとき,t → ∞ における(1)の解を求めよ。 よろしくお願いします。

    • math555
    • 回答数1
  • 微分積分 問題

    提出期限が迫っていて困っています。 いろいろと問題を解いてきたのですが、 残る微分積分が理解できずかなり苦戦中です。 わかる方教えてください。 宜しくお願いします。 I 次の関数を微分せよ(f')。 1) 3x**2 + 5x + 2 2) 1 / (3x) 3) (2x + 1) / (x**2 + 5x + 3) 4) (2x + 1)**(1/2) 5) 1 / (x**2 - 2x + 3)**(1/2) 6) 3 log x 7) x log (2x + 1) 8) e**(2x) 9) x**(1/3) 10) sin x + cos 2x 11) e**x cos x 12) log x / sin x 13) x log x - tan x 14) (x**3 + 3x**2 - 6x + 2)**3 15) (x**3 + 2x - 1)**(1/2) II 上問 1-2, 6-11の第2階導関数をもとめよ(f'')。 III 次の関数の不定積分(原始関数)を求めよ。 1) x**2 - 4x + 1 2) 1 / (x + 3)**2 3) x**(2/3) 4) (3x + 2)**(1/2) 5) 1 / (2x) (x > 0) 6) 1 / (x**2 - 1) (x > 1) 7) e**(2x) 8) x log x 9) sin x + cos 2x 10) x cos x 11) x**2 e**x IV 上問 1-5, 7-8, 11の区間 [ 1, 2 ] 上の定積分を求めよ。 (x**2はxの2乗を、x**(1/3)はxの1/3乗(3乗根)を表わす。)

  • 微分の問題

    微分の公式で (sinθ)'=conθ であるのは憶えているのですが、上式の時 θ=(ax+b) だった場合はどうだったか憶えてないんです。 例題として y=7*cos(0.5x+0.3)の微分の場合どうなるでしょう。 分るかた教えてください。