検索結果
1階微分方程式
- 全てのカテゴリ
- 全ての質問
- 2階微分方程式の解き方
2階微分方程式 y'' + 2y = sin 2x の一般解を求めよ。 (Ans. y = A cos √2 x + B sin √2 x - (1/2)sin 2x ) 斉次微分方程式 y'' + 2y = 0の一般解は 特性方程式より u = A cos √2 x + B sin √2 x と求まりましたが 1つの解(y1とする)をどのように予想するかが分かりません。
- 微分方程式についての質問です。
微分方程式についての質問です。 x(x-1)y"+(3x-2)y'+y=2x という問題がわかりません><; どなたかご教授願います。 (y"はxに関するyの2階微分、y'はxに関するyの1階微分です)
- ローレンツ力場においての角運動量について
電荷q[C]をもつ質量m[kg]の粒子がある。 その位置ベクトルを r = (x,y,z) (太字が出来ませんので、ベクトルと認識してください) とする。 粒子にはローレンツ力 (電場は考えない) F = q(v×B) がかかる。 と、こういう問題条件として、以下の問題がちょっと分からないので教えていただきたく思います。 (1) 角運動量 L = (Lx, Ly, Lz) が満たすべき 一階の微分方程式を導け。 (2) 磁場ベクトル B=(0,0,b) (bは定数)があるとして(つまりz軸方向の一様な磁場です)、初期条件を以下のように定める。 t=0 のとき、 Lx=0, Ly=L0 (L0は定数) このときの、(1)の微分方程式を解け。 といったものです。 問題条件だけ見ると、よくある一様磁場内での粒子の運動だと思いますし、粒子の与え方によっては螺旋回転運動をして、その回転角速度は ω= qb / m になる・・ など教科書でよく取り上げられる程度の解は、私にも分かります。 まず、角運動量については、(1)の満たす一階の微分方程式というのはおそらく力のモーメントのことだと思いますので、 dL/dt = r × F = r × q(v × B) = q ( v(r・B) - B(r・v) ) …でよろしいのでしょうか。 さて(2)ですが、途中計算を省略しまして、各成分については、以下時間微分を dL/dt = L' のように表しますと v = ( x', y', z' ) としまして Lx' = qb z y' Ly' = qb z x' Lz' = -qb ( x x' + y y' ) となりましたので、答え…ということでよろしいのでしょうか? 条件などで何か他の方程式になるような気もするのですが、有用であるような式を私には導き出せません。(多分これが間違っているからこの後が解けないような気もしています) 一応問題にはヒントとして、一階の微分方程式をもう一度両辺tで微分し、二階の微分方程式として解き、それから一階の微分方程式の解を求めると良い。 とあります。 (1)で求めたものを一応微分しましても、ヒントが恐らく言いたいだろう、まったく計算しやすいものとはいえない気がします。連立微分方程式でしょうが、ベクトルLとrが混じって(Lもvなどに直して計算していくという泥臭い方法でなら私にも解けるかもしれません)どのように解まで計算できるのか数学的にも少し分からない状態です。 以上に示しましたとおり、私が数学的な微分方程式の解法を十分理解していないだけなのかもしれませんが・・・どなたか分かる人がおられましたら教えていただきたく思います。 宜しくお願いします。
- 2階の微分方程式
こんにちは。現在、微分方程式に取り組んでいます。 おそらくとても単純な所で詰まってしまって、困っています。よろしくお願いします。 式(1) G=dx/dt=py-ax+i 式(2) F=dy/dt=qx-by+j を使って (1)G=F=0の時、x0、y0を求める (2)n=x-x0,m=y-y0とし、n(t),m(t)それぞれに対する2階微分方程式を求めよ という問題です。 (1)は連立方程式を解いて x=(bi+pj)/(ab-pq) y=(aj+qi)/(ab-pq) までは出せたのですが、これらをそれぞれx0,y0と考えてしまってよいのでしょうか? 「x,yの2階の微分方程式にする」ようなヒントがあったのですが、そのヒントでかえって混乱しています。 (2)はx0、y0で詰まってしまったので。。。止まっています。 すみませんが、よろしくお願いします。
- 線形微分方程式の定義
線形微分方程式の定義というのは、以下のもので認識しているのですが、 これであっているのでしょうか? (検索しても、とくに「定義」として書かれているものは少なく、 自分の「定義」の認識が違っていると大変なので…。) n階の微分方程式が P0(x) d^ny/dx^n + P1(x) d~n-1y/dx^n-1 + … + Pn-1(x)dy/dx +Pn(x)y = Q(x) のかたちをしているとき、これを線形微分方程式という。
- 解析学の問題
難問のためお力添え頂ければ幸いです。長文ですが失礼致します。問題文は一応写真にも載せておきます。 定数係数のn階線形微分方程式 z^(n)+a1z^(n-1)+a2z^(n-2)・・・+an-1z'+anz=0 (✝︎)の特性方程式をf(p)=0とおく。また、(✝︎)において、y1=z^(n-1)、y2=z^(n-2) ... yn-1=z’、yn=z と変数変換すると、y1、y2・・・、ynに関する連立線形微分方程式が得られるが、その連立線形微分方程式の係数行列をAとおく。 このとき、(✝︎)の特性方程式f(p)=0の解と係数行列Aの固有値との関係について述べなさい。
- 微分方程式 y''=y'
F(x,y',y'')=0は、yを独立変数としてy'=zとおけば、微分の連鎖法則により1階微分方程式F(y,z,(dz/dy)z)=0に帰着する。この方法を用いてy''=y'を1階の微分方程式に変換して解け。 この問題の解き方を教えてください。 y=e^(λx)と置いて解く方法では解けるのですが、この問題で指定された解き方はどのような風に解けばいいのか分からないので…。
- 線形微分方程式について
微分方程式の分類に関して、 線形…y(x)及びその微分について一次までのもの。 と手元の資料には書いてるんですが、 これはy(x)もしくはdy(x)/dx のみを含んでいる、ということですか? 調べてみると、斉次2階微分方程式なるものもあるようで困っています。(斉次ということは線形ですよね?2次が含まれていていいんでしょうか?)
- 線形2階斉次微分方程式の一般解の、定数変化法を使った求め方での、追加条件の意味を教えてください。
線形斉次2階微分方程式の一般解を定数変化法で求めるとき、 まず斉次として解き、 y = Ay1' + By2' (1) を求め、A,Bを変数として、式(1)の0,1,2階微分と、元の微分方程式、条件式 A'y1 + B'y2 = 0 を用いてA,Bを導出し、一般解を求めますが、 条件式A'y1 + B'y2 = 0 にはどういう意味があるのでしょうか。 そもそも、勝手に条件を加えていいのですか。 解を限定するため、式が1つでは2変数を求められないため などの説明はよく見ますが、納得できません。 どうかよろしくお願いします。
- 1・2次元の波動方程式
∂^2u/∂^t2=c^2∂^2u/∂x^2 を以下の境界条件の下で解け。 (1)x=0でu=0、x=Lでu=0 (2)x=0でu=0、x=Lで∂u/∂x=0 という問題をやっているのですが、この微分方程式の解き方がわかりません。1、2階の線形、非線形微分方程式は習ったのですが、この微分方程式は、左辺はtで微分していて、右辺はxで微分していて、どういうことなのかわかりません。また、これが2次元になった場合はどのようにすればいいのでしょうか?
- 教えて下さい。
α β を二次方程式X^2+a1x+a0=0 の相異なる二つの複素数解とする。 A,Bを任意定数とする。 複素数値関数f(x)=Aexp(αt)+Bexp(βt)は、二階の常微分方程式の解であることを示せ。
- ベストアンサー
- 数学・算数
- tetugakusha20
- 回答数2
- 常微分方程式
常微分方程式の定義が良くわかりません。 ウィキペディアの常微分方程式の定義を見ますと、 F(t,x(t),x'(t),...,x(n-1)(t),x(n)(t))=0 と書かれています。 なお、x(n)はxのn階の意味です。 http://ja.wikipedia.org/wiki/%E5%B8%B8%E5%BE%AE%E5%88%86%E6%96%B9%E7%A8%8B%E5%BC%8F すると、x(t)のn乗や定数項が含まれる式は常微分方程式ではないのでしょうか。 よろしくお願いします。
- 締切済み
- 数学・算数
- nakama-yukie
- 回答数1
- 微分方程式
微分方程式は問題を解くやり方が異なると答えも若干ことなるのでしょうか? たとえば x^2*y'+y^2=0・・(1) y'=-y^2/x^2 z=y^2/x^2 ・ ・ としていけば y=cx/(x-c) となりますが (1)から dy/y^2=-dx/x^2 ・ ・ y=cx/(x-c) また(1)から完全微分方程式とみなして x^2y+xy^2=c としてもいいのでしょうか? もうひとつ (x+1)y'=x+2y+3 という問いは y’-2y/(x+1)=(x+3)/(x+1) として一階線形微分方程式のように解くと y=(1/(x+1)^2)(x^4/4+3x^2/2+x+log(x+2)+c) とならないでしょうか?
- 下記の問題、解き方、解答詳細教えて下さい
一階の線形偏微分方程式 5Ux+2Uy=0を 初期条件u(x,0)=-3exp(4x) のもとで解け
- ベストアンサー
- 数学・算数
- tetugakusha20
- 回答数2