検索結果
微分
- 全てのカテゴリ
- 全ての質問
- 微分
|a|<1のとき、lim(n→∞)na^n=0を示すにはどうやるのですか? 親切におしえてください できれば、途中式をつけてくれるとうれしい 参考書の説明には a=0のときは明らかに成り立つ。 a<0の場合は絶対値をとることによってa>0の場合に帰着されるので、0<a<1の場合を考えれば十分である。 a=1/(1+h)とおくとh>0であり、またニ項定理を用いることにより、 (1+h)^n> nC2 h^2=(n(n-1)/2)・h^2 が成り立つことから 0<na^n=n/(1+h)^n<2n/n(n-1)h^2 =2/(n-1)h^2 これは、n→∞においての0に収束するので、はさみうちの原理により、 lim(n→∞)na^=0 が示される。 何回もよんだのですが、よくわかりません。 できれば、くわしくおしえてください
- 微分
問題を解いたのですが、自分の答えがあっているか不安なので、間違っているか教えてくれませんか? 問1 次の導関数を求めよ。 (1) y=(sinx + x^2)^(4/3) (2) y={(e^2x + 1)^(1/2)}/e^(-x) 問2 次の導関数を求めよ。 (3) y=arccos2x/sinx 問3 次の極値を求めよ。 (4) y=x+2sinx (0≦x≦2π) (5) y=x^(1/2)-logx 自分の解答 (1) y'=(4/3)(cosx+x^2)(sinx+x^2)^(1/3) (2) y'={(e^2x +1)^(1/2)+(e^2x +1}/(e^-x)(e^2x +1)^(1/2) (3) y'=-[{2sinx/(1-4x^2)}+cosx・arccos2x]/sin^2 x (4) 自信がないので全部書きます。 y'=1+2cosx=0 よってcosx=-1/2 x=2π/3 増減表を書くと x 2π …4π/3… 2π/3 … 0 y + - + z /極大 \ 極小 / (/は右上の矢印のことです) よって極大値は y=4π/3-√3 極小値は y=2π/3+√3 ここで、疑問なのですが、極大値より極小値のほうが値が大きいと思うのですが、これでいいのでしょうか? (5) y'=0より、x=4となる 増減表を書くと x 0 … 4 … y - + z \ 極小 / (/は右上, \は右下の矢印のことです) よって極小値は y=2-2log2 このような解答になりましたがどうでしょうか?
