• ベストアンサー

連立合同式

連立合同式が2つの時の解き方をおしえてください。 または、2つだとできないのでしょうか?? 問題は x≡3(mod5) x≡2(mod7) 答えは23です 2つで出来るのでしょうか?というより、学校でもらった資料ではできているのですが↓ どうかお願いします。

質問者が選んだベストアンサー

  • ベストアンサー
回答No.2

2つで解けますよ。ユークリッドの互除法を用いれば簡単に解けます。 一応ユークリッドの互除法を用いずに簡単に説明しておきますね。 まず、剰余簡単な説明をしておきます。 剰余の簡単な意味は、たとえば x≡3(mod5) であれば、xは5で割って3余る数全体を指します。 具体的には 3,8,13,18,23,28,33…(全て5で割るとあまりが3になりますね)となり、式で書くと x = 5a + 3 (aは任意の整数)と表されます。 同様に x≡2(mod 7)のxは7で割って2余る数全体となります。 具体的には 2,9,16,23,30,37…(↑と同様7で割るとあまりが全て2)となり式で書くと x = 7b + 2 (bは任意の整数)と表されます。 上の数字列から、2つに共通している数が23であることからxの解は23ということが分かりますね。ただ、数学的に解くには2つの式からユークリッドの互除法という解き方を用います。一応ここまで描いておきますが、必要になったらユークリッドの互除法で検索してみてください。

doora88
質問者

補足

検索してもよくわからないです。 よく似たのはありますができません

その他の回答 (1)

  • f272
  • ベストアンサー率46% (8003/17108)
回答No.1

x≡3(mod5)から7x≡21(mod35) x≡2(mod7)から5x≡10(mod35) この2つの連立合同式なら出来るかな? 7x≡21(mod35)から14x≡42≡7(mod35) 5x≡10(mod35)から15x≡30(mod35)

関連するQ&A

  • 連立1次合同式の解き方がよくわかりません。

    連立1次合同式の解き方がよくわかりません。 整数xの連立1次合同式を解きなさい。 5x ≡ 7 (mod11) 3x ≡ 5 (mod19) という問題です。 途中式と答えを教えてください。 よろしくお願いします。

  • 連立合同式の初級です。急いでいます。

    連立合同式の初級です。急いでいます。 問題は… x≡8(mod13),x≡17(mod19) の時です。 答えは… x≡112(mod247) です。お願いしますm(__)m

  • 連立合同式について

    N≡1(mod 2) N≡2(mod 3) の連立合同式について解を求める1つの方法として、右辺を同じにする形 N≡5(mod 2) N≡5(mod 3) を学習しましたが、右辺を等しくするための手順を (2+3)*1と理解したのですが、それでよいのでしょうか? 例えば3つの連立合同式 N≡2(mod 3) N≡3(mod 5) N≡2(mod 7) の場合、右辺を等しくするための手順を教えてください。よろしくお願いします。

  • 連立1次合同方程式

    連立1次合同方程式 x≡b_1(mod m) x≡b_2(mod n) の一般解をxとするとき、gcd(m,b_1)=1かつgcd(n,b_2)=1であるならば、かつその時に限り、gcd(mn,x)=1 これをどのように示したらよいか分かりません。 1次合同方程式を解くことはできるのですが、証明となるとどうしていいか分からなくなってしまいました。 分かる方、助けてください。

  • 連立合同式の解法について

    連立合同式の解法について具体的に教えてください。 合同式が2つの場合 N≡1(mod2) N≡2(mod3) N≡5(mod2) N≡5(mod3) N-5≡0 (mod2) N-5≡0 (mod3) N-5≡0 (mod6) N=5+6K という形式の解法を習っているのですが、 合同式が3つ、例えば N≡2(mod3) N≡3(mod5) N≡2(mod7) の時、2つの時と同じく右辺を等しくして解を導き出す方法があるのでしょうか?右辺を等しくする方法があれば、具体的に教えてください。よろしくお願いします。

  • 連立合同式

    合同系の解をすべて求めてください。 x ≡1(mod8) x ≡2(mod11) x ≡7(mod15) 3960 ≡ 0(mod 1320) x = 1320m これであってますか?

  • 連立合同式の商の定理について

    連立合同式の商の定理について教えてください。 x,yを整数 m,aを自然数とするとき ax≡ay (mod m) ⇔ x≡y ( mod m/GCD(m,a) ) (おかしな表記ですみません。( mod -)は分数式です) が「商の定理」と習いましたが、これは連立合同式 x≡a (mod K) x≡b (mod L) x≡c (mod M) のK L M が「互いに素」ではないときに適用できる定理だと思うのですが、うまく理解できません。 解らない点:(1) 連立合同式 x≡a (mod K) x≡b (mod L) の時、K L のGCDが「1」で「互いに素」と覚えていますが x≡a (mod K) x≡b (mod L) x≡c (mod M) の時も K L MのGCDが「1」で「互いに素」、それ以上ならば「互いに素」ではないと理解してよいのでしょうか? 解らない点:(2) x≡a (mod K) x≡b (mod L) x≡c (mod M) で K L M が「互いに素」ではない場合、商の定理を適用した解法でx≡y ( mod m/GCD(m,a) )を求める方法。 K L M が「互いに素」ではない時、K L Mの最小公倍数を使えばよいのは解るのですが、GCD(m,a)の「a」が理解できません。「m」はK L Mの最小公倍数だと思うのですが、「a」は何になるのでしょう? x≡2 (mod 4) x≡4 (mod 12) x≡3 (mod 9) の場合を例として、具体的に解法を教えてください。 よろしくお願いします。もしも上式が連立合同式として成立しないのであれば、その理由も教えてください。 中国式余剰定理では、( mod ○ )が「互いに素」ではない場合にも解を求める事ができると、参考書にはあるのですが、最小公倍数を使う事しか理解できません。 具体的な解法で、よろしくお願いします。

  • 連立合同式の解法

    連立合同式 x≡5(mod 16), x≡15(mod 22) の数学的解法がわかりません。中国剰余定理は知っていますが、16と22は互いに素でないので、他の解法が存在するのでしょうか。 または、互いに素の場合でも使用できる中国剰余定理の拡張が存在するのでしょうか。 適当な整数を代入して試す方法(総当たり法)はなしでお願いします。

  • 合同式の解き方を教えてください。

    解き方が別の合同式だと思うのですが、それぞれの問題の解き方を教えてください。 一つ目 次の合同式を解く、または、解けないことを証明せよ。 (a) 3x^2 - 5x + 7 ≡ 0 (mod 13) (b) 5x^2 - 6x + 2 ≡ 0 (mod 13) (c) x^2 + 7x + 10 ≡ 0 (mod 11) 二つ目 29の原始根は2であり、指数表を作り、それを使って合同式を解け。 (d) 17x^2 - 3x + 10 ≡ 0 (mod 29) (e) x^7 ≡ 17 (mod 29) これらの問題の解き方を教えてください。 よろしくお願いします。

  • 合同式の解き方

    合同式の解き方と一口に言っても色々な物があるとは思うのですが、私は現在以下の合同式が解けないで困っています。 x^329≡452(mod1147) フェルマーの小定理を使って解くのだとは思うのですが、如何せんmodが1147と大きすぎるためにうまく処理することができません。 答えをそのまま聞くのはあまりにもおこがましいので、よろしければヒントだけでも教えて頂けないでしょうか。 よろしくお願いします。