jcpmutura の回答履歴

全747件中1~20件表示
  • (続)これってコーシーの積分公式の矛盾!?

    https://okwave.jp/qa/q9571473.html の続きです。 文字数が多くなってしまいましたので下記のアップしましたのでご覧いただけましたら幸いでございます。 https://kyokoyoshikawa.web.fc2.com/newdir/question/q9571473.txt

  • (続)これってコーシーの積分公式の矛盾!?

    https://okwave.jp/qa/q9571473.html の続きです。 文字数が多くなってしまいましたので下記のアップしましたのでご覧いただけましたら幸いでございます。 https://kyokoyoshikawa.web.fc2.com/newdir/question/q9571473.txt

  • (続)これってコーシーの積分公式の矛盾!?

    https://okwave.jp/qa/q9571473.html の続きです。 文字数が多くなってしまいましたので下記のアップしましたのでご覧いただけましたら幸いでございます。 https://kyokoyoshikawa.web.fc2.com/newdir/question/q9571473.txt

  • (続)これってコーシーの積分公式の矛盾!?

    https://okwave.jp/qa/q9571473.html の続きです。 文字数が多くなってしまいましたので下記のアップしましたのでご覧いただけましたら幸いでございます。 https://kyokoyoshikawa.web.fc2.com/newdir/question/q9571473.txt

  • (続)これってコーシーの積分公式の矛盾!?

    https://okwave.jp/qa/q9571473.html の続きです。 文字数が多くなってしまいましたので下記のアップしましたのでご覧いただけましたら幸いでございます。 https://kyokoyoshikawa.web.fc2.com/newdir/question/q9571473.txt

  • (続)これってコーシーの積分公式の矛盾!?

    https://okwave.jp/qa/q9571473.html の続きです。 文字数が多くなってしまいましたので下記のアップしましたのでご覧いただけましたら幸いでございます。 https://kyokoyoshikawa.web.fc2.com/newdir/question/q9571473.txt

  • (続)これってコーシーの積分公式の矛盾!?

    https://okwave.jp/qa/q9571473.html の続きです。 文字数が多くなってしまいましたので下記のアップしましたのでご覧いただけましたら幸いでございます。 https://kyokoyoshikawa.web.fc2.com/newdir/question/q9571473.txt

  • (続)これってコーシーの積分公式の矛盾!?

    https://okwave.jp/qa/q9571473.html の続きです。 文字数が多くなってしまいましたので下記のアップしましたのでご覧いただけましたら幸いでございます。 https://kyokoyoshikawa.web.fc2.com/newdir/question/q9571473.txt

  • (続)これってコーシーの積分公式の矛盾!?

    https://okwave.jp/qa/q9571473.html の続きです。 文字数が多くなってしまいましたので下記のアップしましたのでご覧いただけましたら幸いでございます。 https://kyokoyoshikawa.web.fc2.com/newdir/question/q9571473.txt

  • (続)これってコーシーの積分公式の矛盾!?

    https://okwave.jp/qa/q9571473.html の続きです。 文字数が多くなってしまいましたので下記のアップしましたのでご覧いただけましたら幸いでございます。 https://kyokoyoshikawa.web.fc2.com/newdir/question/q9571473.txt

  • (続)これってコーシーの積分公式の矛盾!?

    https://okwave.jp/qa/q9571473.html の続きです。 文字数が多くなってしまいましたので下記のアップしましたのでご覧いただけましたら幸いでございます。 https://kyokoyoshikawa.web.fc2.com/newdir/question/q9571473.txt

  • (続)これってコーシーの積分公式の矛盾!?

    https://okwave.jp/qa/q9571473.html の続きです。 文字数が多くなってしまいましたので下記のアップしましたのでご覧いただけましたら幸いでございます。 https://kyokoyoshikawa.web.fc2.com/newdir/question/q9571473.txt

  • (続)これってコーシーの積分公式の矛盾!?

    https://okwave.jp/qa/q9571473.html の続きです。 文字数が多くなってしまいましたので下記のアップしましたのでご覧いただけましたら幸いでございます。 https://kyokoyoshikawa.web.fc2.com/newdir/question/q9571473.txt

  • (続)これってコーシーの積分公式の矛盾!?

    https://okwave.jp/qa/q9571473.html の続きです。 文字数が多くなってしまいましたので下記のアップしましたのでご覧いただけましたら幸いでございます。 https://kyokoyoshikawa.web.fc2.com/newdir/question/q9571473.txt

  • (続)これってコーシーの積分公式の矛盾!?

    https://okwave.jp/qa/q9571473.html の続きです。 文字数が多くなってしまいましたので下記のアップしましたのでご覧いただけましたら幸いでございます。 https://kyokoyoshikawa.web.fc2.com/newdir/question/q9571473.txt

  • (続)これってコーシーの積分公式の矛盾!?

    https://okwave.jp/qa/q9571473.html の続きです。 文字数が多くなってしまいましたので下記のアップしましたのでご覧いただけましたら幸いでございます。 https://kyokoyoshikawa.web.fc2.com/newdir/question/q9571473.txt

  • これってコーシーの積分公式の矛盾!?

    ルベーグ積分と複素積分の関係についての質問です。 先ず,定義等を説明させてください。 (Ω,∑)を可測集合とする。 (1) μ:∑→Cを0=μ(φ)≦|μ(G)|<+∞ for ∀G∈∑. (2) {G_k}_{k=1}^∞⊂∑が互いに素 ⇒ |μ(∪_{k=1}^∞}G_k)|=∑_{k=1}^∞|μ(G_k)| を満たす時,μは複素測度をなすという。 次にB(C)をC上のボレル集合体,A:={{x+iy∈C;x∈(Re(a),Re(b)],y∈(Im(a),Im(b)]}∈2^C;a,b∈C}}を表すとする。この時, ∀a,b∈Cに対して,μ_0:A→CをA∋∀{x+iy∈C;x∈(Re(a),Re(b)],y∈(Im(a),Im(b)]}→μ_0({x+iy∈C;x∈(Re(a),Re(b)],y∈(Im(a),Im(b)]}):=Re(b)-Re(b)+i(Im(b)-Im(a))と定義すると, μ|_A=μ_0でμ:B(C)→Cが複素測度となるようなものが一意的に存在する(∵拡張定理)。 次に,測度空間(Ω,∑,μ)において,f:Ω→Cを∑可測関数とし,f_Re^±(z):=max{0,±Re f(z)},f_Im^±(z):=max{0,±Im f(z)} (複合同順)と定義すると, これらは実数値関数で Re f_k \nearrow f_Re^±(z), Im f_k \nearrow f_Im^±なる∑可測な単関数の列 (Re f_k)_{k=1}^∞,(Im f_k)_{k=1}^∞ が存在する(∵某命題)。 因みに,∑可測な単関数 Re f_kにはRe f_k(z)=∑_{m=1}^k a_m I_{G_m}(z) (但し,a_m∈R,G_m∈∑, I_{G_m}は特性関数) なる(a_m)_{m=1}^k∈R^kと(G_m)∈∑^kが存在する。 この時, ∫_Ωfμ:= sup{∑_{m=1}^k a_m Re μ(G_m)∈[0,+∞);∑_{m=1}^k a_m I_{G_m}(z)≦f_Re^+(z) for∀z∈Ω} -sup{∑_{m=1}^k a_m Re μ(G_m)∈[0,+∞);∑_{m=1}^k a_m I_{G_m}(z)≦f_Re^-(z) for∀z∈Ω} +i[sup{∑_{m=1}^k a_m Im μ(G_m)∈[0,+∞);∑_{m=1}^k a_m I_{G_m}(z)≦f_Im^+(z) for∀z∈Ω} -sup{∑_{m=1}^k a_m Im μ(G_m)∈[0,+∞);∑_{m=1}^k a_m I_{G_m}(z)≦f_Im^-(z) for∀z∈Ω}] をfのルベーグ積分という。 続いて,ルベーグ積分に基づく複素積分の定義です。 J:[a,b]→Cをジョルダン曲線とし,P:=∪_{2≦k∈N}{(p_m)_{m=2}^k∈(a,b)^k;(p_m)_{m=2}^kは増加列}, δ:P→(p,b-a)をP∋∀(p_m)_{m=2}^k→δ((p_m)_{m=2}^k):=max{p_2-p_1,p_3-p_2,…,p_{k+1}-p_k} (但し,p_1=a,p_{k+1}=b)と定義する。 この時, lim_{n→∞}∪_{(p_m)_{m=2}^k(n)∈δ^{-1}(1/n)}{ ∑_{m=1}^k(n) inf f_Re^+(J(p_m,p_{m+1})) Re μ((J(p_m),J(p_{m+1})]) - ∑_{m=1}^k(n) inf f_Re^-(J(p_m,p_{m+1})) Re μ((J(p_m),J(p_{m+1})]) + i(∑_{m=1}^k(n) inf f_Im^+(J(p_m,p_{m+1})) Im μ((J(p_m),J(p_{m+1})]) - ∑_{m=1}^k(n) inf f_Im^-(J(p_m,p_{m+1})) Im μ((J(p_m),J(p_{m+1})])} ={l} (ここでk(n)はnのよって決まる自然数) なるl∈Cが存在する)時,fは複素積分可能という。 因みに, J([a,b])は閉集合なのでルベーグ可測集合であり, inf f_Re^+(J(p_m,p_{m+1}))はルベーグ積分でのa_mに相当, そして, (J(p_m),J(p_{m+1})]はルベーグ積分でのG_mに相当してます。 さて,本題ですが、、 Jがジョルダン閉曲線の場合,始点と終点は重なってるので μ(J([a,b]))=lim_{n→∞}∪_{(p_m)_{m=2}^k(n)∈δ^{-1}(1/n)}{∑_{m=1}^k(n) μ((J(p_m),J(p_{m+1})])=0 となり,J[a,b]は零集合になると思います。 そこでf:C→CはJ([a,b])上とJの内部で正則な関数とし,c∈CはJ内部の点とする時, 1/(2πi)∫_J f(z)/(z-c)dz=f(c) となりますよね(コーシの積分公式)? しかしJ([a,b])は零集合なのでfやcのいかんにかかわらず常に積分値は0となってしまうと思うんです。 、、なので コーシーの積分公式は 1/(2πi)∫_J f(z)/(z-c)dz≡0 となってしまい矛盾が生じてしまいます。 私は何処を勘違いしてるのでしょうか?

  • 高校数学数列の問題です。

     数列 { a[n] } を次のように定める。 (i)a[1] = 0 (ii)n = 2, 3, 4, … に対し a[n-1] ≧ n のとき a[n] = a[n-1] - n a[n-1] < n のとき a[n] = a[n-1] + n とする。 (1)a[7] を求める。 (2)a[k] = k のとき、条件 m > k、a[m] = m を満たす最小の整数 m を k で表す。 (3)a[2018]を求める。  昨夜 https://okwave.jp/qa/q9573183.html で同じ質問をした者です。せっかく回答いただいたのに、ぱっと見でわかったと勘違いしてました。じっくり取り組んだら全然理解していませんでした(笑)。 (2)   a[k] = k (kは自然数) より n = k+1 のとき a[k] = k < k+1 なので   a[k+1] = a[k] + (k+1) = 2k + 1.  n = k+2 のとき a[k+1] = 2k + 1.   2k+1 - (k+2) = k - 1 ≧ 0.  したがって   a[k+2] = k-1.  ある自然数 j < k に対して   a[k+2j-1] = 2k + j   a[k+2j] = k - j と仮定する。  n = k+2j+1 のとき   a[k+2j] - k+2j+1  = (k-j) - (k+2j+1) = -3j-1 < 0 だから、a[n]の定義により   a[k+2j+1] = a[k+2j] + k+2j+1        = (k-j) + k+2j+1        = 2k + j + 1.  n = k+2j+2 のとき   a[k+2j+1] - (k+2j+2)   (2k+j+1) - (k+2j+2) = k - j - 1 ≧ 0 ( j < k なので k - j ≧ 1 ) だから   a[k+2j+2] = a[k+2j+1] - k+2j+2        = (2k+j+1) - k+2j+2        = k - j - 1.  ここまでは何とか解読しました(笑)。  まとめると、ある自然数 j < k に対して   a[k+2j-1] = 2k + j   a[k+2j] = k - j と仮定したとき   a[k+2j+1] = 2k + j + 1   a[k+2j+2] = k - j - 1 が成立するわけですが、ここから >  j + 1 < k ならば全ての自然数 j < k に対して >  a[k+2j-1] = 2k + j >  a[k+2j] = k - j ・・・・・ (2.1) > が成り立つ が、わかりにくいです。数学的帰納法を使うのでしょうが、どう適用すればいいのかわかりません。

  • これってコーシーの積分公式の矛盾!?

    ルベーグ積分と複素積分の関係についての質問です。 先ず,定義等を説明させてください。 (Ω,∑)を可測集合とする。 (1) μ:∑→Cを0=μ(φ)≦|μ(G)|<+∞ for ∀G∈∑. (2) {G_k}_{k=1}^∞⊂∑が互いに素 ⇒ |μ(∪_{k=1}^∞}G_k)|=∑_{k=1}^∞|μ(G_k)| を満たす時,μは複素測度をなすという。 次にB(C)をC上のボレル集合体,A:={{x+iy∈C;x∈(Re(a),Re(b)],y∈(Im(a),Im(b)]}∈2^C;a,b∈C}}を表すとする。この時, ∀a,b∈Cに対して,μ_0:A→CをA∋∀{x+iy∈C;x∈(Re(a),Re(b)],y∈(Im(a),Im(b)]}→μ_0({x+iy∈C;x∈(Re(a),Re(b)],y∈(Im(a),Im(b)]}):=Re(b)-Re(b)+i(Im(b)-Im(a))と定義すると, μ|_A=μ_0でμ:B(C)→Cが複素測度となるようなものが一意的に存在する(∵拡張定理)。 次に,測度空間(Ω,∑,μ)において,f:Ω→Cを∑可測関数とし,f_Re^±(z):=max{0,±Re f(z)},f_Im^±(z):=max{0,±Im f(z)} (複合同順)と定義すると, これらは実数値関数で Re f_k \nearrow f_Re^±(z), Im f_k \nearrow f_Im^±なる∑可測な単関数の列 (Re f_k)_{k=1}^∞,(Im f_k)_{k=1}^∞ が存在する(∵某命題)。 因みに,∑可測な単関数 Re f_kにはRe f_k(z)=∑_{m=1}^k a_m I_{G_m}(z) (但し,a_m∈R,G_m∈∑, I_{G_m}は特性関数) なる(a_m)_{m=1}^k∈R^kと(G_m)∈∑^kが存在する。 この時, ∫_Ωfμ:= sup{∑_{m=1}^k a_m Re μ(G_m)∈[0,+∞);∑_{m=1}^k a_m I_{G_m}(z)≦f_Re^+(z) for∀z∈Ω} -sup{∑_{m=1}^k a_m Re μ(G_m)∈[0,+∞);∑_{m=1}^k a_m I_{G_m}(z)≦f_Re^-(z) for∀z∈Ω} +i[sup{∑_{m=1}^k a_m Im μ(G_m)∈[0,+∞);∑_{m=1}^k a_m I_{G_m}(z)≦f_Im^+(z) for∀z∈Ω} -sup{∑_{m=1}^k a_m Im μ(G_m)∈[0,+∞);∑_{m=1}^k a_m I_{G_m}(z)≦f_Im^-(z) for∀z∈Ω}] をfのルベーグ積分という。 続いて,ルベーグ積分に基づく複素積分の定義です。 J:[a,b]→Cをジョルダン曲線とし,P:=∪_{2≦k∈N}{(p_m)_{m=2}^k∈(a,b)^k;(p_m)_{m=2}^kは増加列}, δ:P→(p,b-a)をP∋∀(p_m)_{m=2}^k→δ((p_m)_{m=2}^k):=max{p_2-p_1,p_3-p_2,…,p_{k+1}-p_k} (但し,p_1=a,p_{k+1}=b)と定義する。 この時, lim_{n→∞}∪_{(p_m)_{m=2}^k(n)∈δ^{-1}(1/n)}{ ∑_{m=1}^k(n) inf f_Re^+(J(p_m,p_{m+1})) Re μ((J(p_m),J(p_{m+1})]) - ∑_{m=1}^k(n) inf f_Re^-(J(p_m,p_{m+1})) Re μ((J(p_m),J(p_{m+1})]) + i(∑_{m=1}^k(n) inf f_Im^+(J(p_m,p_{m+1})) Im μ((J(p_m),J(p_{m+1})]) - ∑_{m=1}^k(n) inf f_Im^-(J(p_m,p_{m+1})) Im μ((J(p_m),J(p_{m+1})])} ={l} (ここでk(n)はnのよって決まる自然数) なるl∈Cが存在する)時,fは複素積分可能という。 因みに, J([a,b])は閉集合なのでルベーグ可測集合であり, inf f_Re^+(J(p_m,p_{m+1}))はルベーグ積分でのa_mに相当, そして, (J(p_m),J(p_{m+1})]はルベーグ積分でのG_mに相当してます。 さて,本題ですが、、 Jがジョルダン閉曲線の場合,始点と終点は重なってるので μ(J([a,b]))=lim_{n→∞}∪_{(p_m)_{m=2}^k(n)∈δ^{-1}(1/n)}{∑_{m=1}^k(n) μ((J(p_m),J(p_{m+1})])=0 となり,J[a,b]は零集合になると思います。 そこでf:C→CはJ([a,b])上とJの内部で正則な関数とし,c∈CはJ内部の点とする時, 1/(2πi)∫_J f(z)/(z-c)dz=f(c) となりますよね(コーシの積分公式)? しかしJ([a,b])は零集合なのでfやcのいかんにかかわらず常に積分値は0となってしまうと思うんです。 、、なので コーシーの積分公式は 1/(2πi)∫_J f(z)/(z-c)dz≡0 となってしまい矛盾が生じてしまいます。 私は何処を勘違いしてるのでしょうか?

  • これってコーシーの積分公式の矛盾!?

    ルベーグ積分と複素積分の関係についての質問です。 先ず,定義等を説明させてください。 (Ω,∑)を可測集合とする。 (1) μ:∑→Cを0=μ(φ)≦|μ(G)|<+∞ for ∀G∈∑. (2) {G_k}_{k=1}^∞⊂∑が互いに素 ⇒ |μ(∪_{k=1}^∞}G_k)|=∑_{k=1}^∞|μ(G_k)| を満たす時,μは複素測度をなすという。 次にB(C)をC上のボレル集合体,A:={{x+iy∈C;x∈(Re(a),Re(b)],y∈(Im(a),Im(b)]}∈2^C;a,b∈C}}を表すとする。この時, ∀a,b∈Cに対して,μ_0:A→CをA∋∀{x+iy∈C;x∈(Re(a),Re(b)],y∈(Im(a),Im(b)]}→μ_0({x+iy∈C;x∈(Re(a),Re(b)],y∈(Im(a),Im(b)]}):=Re(b)-Re(b)+i(Im(b)-Im(a))と定義すると, μ|_A=μ_0でμ:B(C)→Cが複素測度となるようなものが一意的に存在する(∵拡張定理)。 次に,測度空間(Ω,∑,μ)において,f:Ω→Cを∑可測関数とし,f_Re^±(z):=max{0,±Re f(z)},f_Im^±(z):=max{0,±Im f(z)} (複合同順)と定義すると, これらは実数値関数で Re f_k \nearrow f_Re^±(z), Im f_k \nearrow f_Im^±なる∑可測な単関数の列 (Re f_k)_{k=1}^∞,(Im f_k)_{k=1}^∞ が存在する(∵某命題)。 因みに,∑可測な単関数 Re f_kにはRe f_k(z)=∑_{m=1}^k a_m I_{G_m}(z) (但し,a_m∈R,G_m∈∑, I_{G_m}は特性関数) なる(a_m)_{m=1}^k∈R^kと(G_m)∈∑^kが存在する。 この時, ∫_Ωfμ:= sup{∑_{m=1}^k a_m Re μ(G_m)∈[0,+∞);∑_{m=1}^k a_m I_{G_m}(z)≦f_Re^+(z) for∀z∈Ω} -sup{∑_{m=1}^k a_m Re μ(G_m)∈[0,+∞);∑_{m=1}^k a_m I_{G_m}(z)≦f_Re^-(z) for∀z∈Ω} +i[sup{∑_{m=1}^k a_m Im μ(G_m)∈[0,+∞);∑_{m=1}^k a_m I_{G_m}(z)≦f_Im^+(z) for∀z∈Ω} -sup{∑_{m=1}^k a_m Im μ(G_m)∈[0,+∞);∑_{m=1}^k a_m I_{G_m}(z)≦f_Im^-(z) for∀z∈Ω}] をfのルベーグ積分という。 続いて,ルベーグ積分に基づく複素積分の定義です。 J:[a,b]→Cをジョルダン曲線とし,P:=∪_{2≦k∈N}{(p_m)_{m=2}^k∈(a,b)^k;(p_m)_{m=2}^kは増加列}, δ:P→(p,b-a)をP∋∀(p_m)_{m=2}^k→δ((p_m)_{m=2}^k):=max{p_2-p_1,p_3-p_2,…,p_{k+1}-p_k} (但し,p_1=a,p_{k+1}=b)と定義する。 この時, lim_{n→∞}∪_{(p_m)_{m=2}^k(n)∈δ^{-1}(1/n)}{ ∑_{m=1}^k(n) inf f_Re^+(J(p_m,p_{m+1})) Re μ((J(p_m),J(p_{m+1})]) - ∑_{m=1}^k(n) inf f_Re^-(J(p_m,p_{m+1})) Re μ((J(p_m),J(p_{m+1})]) + i(∑_{m=1}^k(n) inf f_Im^+(J(p_m,p_{m+1})) Im μ((J(p_m),J(p_{m+1})]) - ∑_{m=1}^k(n) inf f_Im^-(J(p_m,p_{m+1})) Im μ((J(p_m),J(p_{m+1})])} ={l} (ここでk(n)はnのよって決まる自然数) なるl∈Cが存在する)時,fは複素積分可能という。 因みに, J([a,b])は閉集合なのでルベーグ可測集合であり, inf f_Re^+(J(p_m,p_{m+1}))はルベーグ積分でのa_mに相当, そして, (J(p_m),J(p_{m+1})]はルベーグ積分でのG_mに相当してます。 さて,本題ですが、、 Jがジョルダン閉曲線の場合,始点と終点は重なってるので μ(J([a,b]))=lim_{n→∞}∪_{(p_m)_{m=2}^k(n)∈δ^{-1}(1/n)}{∑_{m=1}^k(n) μ((J(p_m),J(p_{m+1})])=0 となり,J[a,b]は零集合になると思います。 そこでf:C→CはJ([a,b])上とJの内部で正則な関数とし,c∈CはJ内部の点とする時, 1/(2πi)∫_J f(z)/(z-c)dz=f(c) となりますよね(コーシの積分公式)? しかしJ([a,b])は零集合なのでfやcのいかんにかかわらず常に積分値は0となってしまうと思うんです。 、、なので コーシーの積分公式は 1/(2πi)∫_J f(z)/(z-c)dz≡0 となってしまい矛盾が生じてしまいます。 私は何処を勘違いしてるのでしょうか?