• 締切済み

これってコーシーの積分公式の矛盾!?

jcpmuturaの回答

  • jcpmutura
  • ベストアンサー率84% (311/366)
回答No.9

測度の定義 μ([a,b])=(|Re(a)-Re(b)|+i|Im(a)-Im(b)|)/|a-b| を μ([a,b])=|Re(a)-Re(b)||Im(a)-Im(b)|](|Re(a)-Re(b)|+i|Im(a)-Im(b)|)/|a-b| に 訂正します 測度の定義 μ((α,β]):=Re(β-α)+iIm(β-α) は μ((α,β]):=β-α と同じです 例えば a=1 b=i c=i d=-1 とすると (a,b]=(1,i]={x+iy|0≦x<1,0<y≦1} (c,d]=(i,-1]={x+iy|-1≦x<0,0≦y<1} μ{(a,b]}+μ{(c,d]}=μ{(1,i]}+μ{(i,-1]}=i-1-1-i=-2 (a,b]∪(c,d]={x+iy|-1≦x<1,0≦y≦1}=[-1,1+i] だから μ{(a,b]∪(c,d]}=μ[-1,1+i]=2+i≠-2=μ{(a,b]}+μ{(c,d]} だから 加法性が成り立ちません

関連するQ&A

  • コーシーの積分公式について

    コーシーの積分公式を使って、f(z)=1/{(z-a)(z-b)}とした ∮f(z) dz を求める過程に違和感を感じるので、誤っているところの指摘をお願いいたします。 f(z)=1/{(z-a)(z-b)}として、 C_ab を極a, bを囲む閉曲線, C_aを極aのみを囲む閉曲線, C_b を極bのみを囲む閉曲線とします。これらの閉曲線の向きはいずれも反時計回りとします。 このとき、極a,bを避けるような周回積分によって(a)式が成り立つと思います。 ∮_C_ab f(z) dz - ∮_C_a f(z) dz - ∮_C_b f(z) dz = 0 …(a) g(z) = 1/(z-a)とすると、 ∮_C_b f(z) = ∮_C_b g(z)/(z-b) dz = 2πi g(b) = 2πi / (b-a) …(b) h(z) = 1/(z-b)とすると、 ∮_C_a f(z) = ∮_C_a h(z)/(z-a) dz = 2πi h(a) = 2πi / (a-b) …(c) よって、 ∮_C_ab f(z) dz - 2πi / (b-a) - 2πi / (a-b) = ∮_C_ab f(z) dz = 0 …(d) となってしまいます。(d)は f(z) の正則性からしてもありえないことだと感じるのですが、どの式変形の途中で誤ってしまったのでしょうか。

  • コーシーの積分公式

     添付図で(1)から(2)の変形がよくわかりません。極限の考え方に慣れてないせいだと思います。工学部でしたのでいわゆる厳密な微積分とは無縁でした。   |( f(z)-f(α) )/(z-α)|<ε/δ ・・・・・(1) から複素数の絶対値の評価式(定理4.1.4)を使って   |∫_C'( f(z)-f(α) )/(z-α)|≦(ε/δ)2πδ ・・・・・(2) のように不等式に等号がつけてよい理由がわからないのです。  定理4.1.4は   g(z) = ( f(z)-f(α) )/(z-α) と置いたとき   g(z)≦M を満たす最大値Mの存在を要求しているであってε/ δでは g(z) の最大値にならないのではないですか。   ∀ε>0,∃δ'>0 s.t. 0<|z-α|<δ'⇒ |f(z)-f(α)|<ε ですから、εをある値に固定したとき、   |z-α|=δ ⇒ |f(z)-f(α)|<ε を満たすようなδがδ'近傍内にあったにせよ   |z-α|=δ   |f(z)-f(α)|<ε なのですから   |( f(z)-f(α) )/(z-α)|≦ε/δ ならないとおもうのですが。もし、等号で結べるとしたら、それはどういう状況なのでしょうか?

  • 複素積分について

     複素数cと実数ξとし、       f(z)=(e^(iξz))/(z-c) という複素関数を考えます。  lr={z=t ; -r<t<r} 、Cr+={z=re^(it) ; 0≦t≦π} 、 Cr-={z=re^(-it) ; 0≦t≦π} として、lrとCr+を合わせた曲線をγ+、lrとCr-を合わせた曲線をγ-とします。  ここで、  (1)Im c≠0、|c|<rとしたとき、f(z)のγ+、γ-上の積分  (2)Im c≠0、ξ≠0のとき、実軸上の積分、          ∫[-r,r] f(x)dx , r→∞ という問題なのですが、(1)については、  )Im c>0のとき    γ-上の積分の積分は、Cauchyの積分定理により、∫[γ-] f(z)dz=0。    また、γ+上の積分は、留数定理により、∫[γ+] f(z)dz=2πie^(iξc)。  )Im c<0のとき    γ+上の積分の積分は、Cauchyの積分定理により、∫[γ+] f(z)dz=0。    また、γ-上の積分は、留数定理により、∫[γ-] f(z)dz=2πie^(iξc)。  となると思うのですが、これで大丈夫なのでしょうか? また、(2)については、  ∫[γ+] f(z)dz + ∫[γ-] f(z)dz =∫[Cr+] f(z)dz +∫[Cr-] f(z)dz+2∫[lr] f(x)dx と考えたのですが、左辺については、Im cの符号によらず4πie^(iξc)となると思いますが、右辺については、よくわからなくなってしまいました。どのようにして、考えていけばよいのでしょうか?どなたかお力添えよろしくお願いします。  読みにくい文章で申し訳ないのですが、よろしくお願いします。

  • 不定積分の問題

    不定積分の問題です。mを自然数とするとき、                n       (1)∫(cosx)^(2m-1)dx=Σa(k)(sinx)^k+C                k=1 (Cは積分定数) (a(k)のkは添え字です。) を満たす自然数nおよび実数a(k)(k=1,2,…,n)を求めよ。 (2)f(t)を多項式とするとき、 ∫f(cosx)dx-∫f(-cosx)dx=g(sinx)+C (Cは積分定数) を満たす多項式g(t)が存在することを示せ。 という問題です。 (1)はn=2m-1     a(k)=0(k=2.4.…n-1)        (k=1,3,…n)のときは式が複雑なので記載するのは控えます。 分からないのは(2)で解答には     n f(t)=Σb(k)t^k とおけるので、n=2L-1とおくと    k=0        L f(t)-f(-t)=Σ2b(2m-1)t^(2m-1)      m=1 となっているんですが、なぜ n=2L-1とおくのか、f(t)-f(-t)の右辺のΣのmが1→L なのかがわかりません。 宜しくお願いします。

  • Lebesgue測度μではμ(S\T)=μ(S)-μ(T)と変形できるの?

    Cantor集合の説明で [0,1]を3等分して(1/3,2/3)を取除くと[0,1/3]と[2/3,1]が残る。次に[0,1/3]と[2/3,1]を3等分して (1/9,2/9),(7/9.8/9)を取除く。 n回目には長さ1/3^nの区間2^(n-1)を取除いた事になるので取除かれた区間全体Gの長さμ(G) (μはLebesgue測度)は Σ[n=1..∞]2^(n-1)/3^n=1 …(1) 従って μ([0,1]\G)=μ([0,1])-μ(G)=(1-0)-1(∵Lebesgue測度の定義と(1))=0 でこの差集合[0,1]\GをCantor集合という。 でμ([0,1]\G)=μ([0,1])-μ(G)となぜ変形出来るのか分かりません。 Lebesbue測度の定義は下記のとおりだと思います。でもどうしても差集合のルベーグ測度が夫々のルベーグ測度の差になる事が導けません。μ([0,1]\G)=μ([0,1])-μ(G)となぜ変形出来るのでしょうか? [定義]Aを全体集合,B⊂2^Aとする。BがA上でσ集合体をなす時,AはBの可測空間をな すと言い,(A,B)と表す。 [定義] (A,B)を可測空間とする。写像f:B→R∪{+∞}は(A,B)上で測度をなす。 ⇔(def) (i) ∀A∈B,f(A)∈{r∈R;0≦r}∪{+∞},f(φ)=0 (ii) ∀m,n∈N\{0} (m≠n), b_m,b_n∈B且つ b_m∩b_n=φ⇒f(∪[k=1..∞]b_k)=Σ[k=1..∞]f(b_k) [定義]f:B→R∪{+∞}を可測空間(A,B)上の外測度をなす。 ⇔(def) (i) f(2^A)⊂[0,∞],特にf(φ)=0 (ii) C⊂D(C,D∈2^A)⇒f(C)≦f(D) (iii) f(∪[n=1..∞]C_n)≦Σ[n=1..∞]f(C_n) (C_n∈2^A (n∈N)) [定義]f:B→R∪{+∞}を可測空間(A,B)上の外測度とする。E(⊂A)は(A,B)上でf-可測 (集合)。 ⇔(def) ∀C∈2^A,f(C)=f(C∩E)+f(C∩E^c) [定義] R^nのm次元区間全{Π[i=1..m](a_i,b_i]\ {∞};a_i,b_i∈R∪{∞}(i=1,2,…,m)} (m≦n)をI(m,n)で表す。 [定義] R^nのm次元区間塊全体{∪[j=1..k]I_i;k∈N\{0},I^m∋I_1,I_2,…,I_k:互い に素}をC(m,n)で表す。 このとき,C(n,n)はR^nで有限加法族をなす。 [定義] 写像g:∪C(n,n)→R^nを C(n,n)∋∀∪[i=1..k]Π[ji=1..n](a_ji,b_ji]→g(∪[i=1..k]Π[ji=1..n](a_ji,b_ji]):= Π(b_i-a_i) (k=1且つΠ[i=1..n](a_j1,b_j1]は有界の時) sup{Π[i=1..n](d_i-c_i);(Π[j1=1..n](a_j1,b_j1]⊃)Π[i=1..n](c_i,d_i]は有界} (k=1でΠ[j1=1..n](a_j1,bj1]は非有界の時) 0 (k=1でΠ[j1=1..n](a_j1,b_j1]=φの時) Σ[i=1..k]g(Π[ji=1..n](a_ji,b_ji]) (k>1で ∪[i=1..k]Π[ji=1..n](a_ji,b_ji]∈C(n,n) (但し ,Π[j1=1..n](a_j1,b_j1],Π[j2=1..n](a_j2,b_j2],…,Π[jn=1..n](a_jn,b_jn]は互 いに素)の時) と定義するとこのgは可測空間(R^n,C(n,n))での有限測度をなす。 そして写像h:2^(R^n)→Rを2^(R^n)∋∀A→h(A):= inf{Σ[k=1..∞]g(E_k);A⊂∪[k=1..∞]E_k (E_k∈C(n,n) (n∈N\{0}))} で定義するとこのhは可測空間(R^n,C(n,n))で外測度をなす。 この時,このhをLebesgue外測度という。 [定義] 写像h:2^(R^n)→R∪{+∞}はルベーグ外測度とする。 L:={E∈2^(R^n);Eは可測空間(R^n,2^(R^n))上でh-可測}をLebesgue可測集合全体の集 合という。 [定義] hをLebesgue外測度とする。制限写像h|Lは測度をなす。 この時,この制限写像h|HをR^n上のLebesgue測度という。

  • 積分可能の証明

    [問]f(x)は[a,b]で定義された有界な関数とする  f(x)が[a,b]の1点cだけで不連続であるならば、f(x)は[a,b]で積分可能であることを証明せよ。  また、f(x)が[a,b]の有限個の点だけで不連続であるならば、f(x)は[a,b]で積分可能であることを証明せよ。 ________________________________ (proof) a<c<bとして、lim_x→c-0 f(x)≠f(c)のとき、f(x)は[a,c]で積分可能であることを示す。 任意のε>0を決めて、[a,c]をI=[a,c-ε] , J=[c-ε,c]とに分けて考える。 f(x)はIでは連続であるから、Iで積分可能。 また、Jでは、  Σ_J O_iδ_i ≦ Σ_J(M-m)δ_i =(M-m)Σ_J δ_i =(M-m)ε  {M,m は[a,c]におけるf(x)の上限、下限} であるから、f(x)はJでも積分可能、したがって、I∪J=[a,c]でも積分可能。 同様に、lim_x→c+0 f(x)≠f(c)のとき、f(x)は[c,b]で積分可能であることを示す。 ↑とりあえず、問題の前半部分はこのように解いたのですが、合っているでしょうか? また、後半部分がわかりません。どのように解けばいいのでしょうか? よろしくお願いします。

  • 複素数の積分

    『∫exp(-z^2)dzを z=√at+b/2√a (a≠0,-∞<t<∞)の経路上で積分せよ。  ただし、a、bは複素定数とする。』 という問題で a=r exp(iθ) (r>0、-π<θ≦π)とすると、 √a=√r exp[i(θ+2kπ)/2] (k=0,1)ですが この問題の積分経路を実際に複素数平面上に図示すると、直線はb≠0のときは原点を通らず、 直線の動き方が、Re(√a)>0の場合は左から右へ、 Re(√a)=0かつIm(√a)>0の場合は下から上へ、 Re(√a)=0かつIm(√a)<0の場合は上から下へ、 Re(√a)<0の場合は右から左へ動く事が分かりました。  ここから、どうすればよいのでしょうか?これは以下の質問http://www.okweb.ne.jp/kotaeru.php3?q=441692から発生した問題です。

  • 楕円にそった複素積分

    複素積分の問題でこの問題がわかりません 次の曲線Cに沿って次のf(z)の積分を計算せよ f(z)=Z^2 曲線C:(x/a)^2+(y/b)^2=1(この楕円の上半分) (-a,0)とCのとの交点をA,(a,0)とCとの交点をBとしB→Aにそう積分です この問題が分かりません おそらく円の時はz=re^iΘとおいて積分するので楕円もこのように何らかの方法で置き換えると思うんですが、どうやって置き換えればいいのか分からないので分かる方、教えていただけると助かります

  • 複素積分(コーシーの積分定理)について質問です

    zを複素数としする。コーシーの積分定理によれば「関数f(z)が領域Dで正則であるとして、領域D内の任意の閉曲線Cの内部が領域Dに含まれる場合、閉曲線Cに沿った関数f(z)の周回積分は0になる。」が成り立つと思います。 そこで次の問題を考えました。(zは複素数変数、aは実数の定数、iは虚数単位とする) 「原点を中心とする半径aの円を閉曲線Cとする。閉曲線Cに沿った、関数f(z)=1/(z-ai)の周回積分Iをを求める。」 閉曲線Cの内部で関数f(z)は正則だけれども、閉曲線Cは関数f(z)が正則でないz=aiの点を含んでいるのでコーシーの積分定理は利用できない。…(1) そこで、次のように積分を行うことにしました。閉曲線Cを複素数で表して、C:z=a*exp(iθ) (0≦θ≦2π) dz/dθ=ai*exp(iθ) よってI =∫f(z)dz =∫{ai*exp(iθ)/(a*exp(iθ)-ai)}dθ (積分範囲は0≦θ≦2π) ここで、[Ln(a*exp(iθ)-ai)](0≦θ≦2π)=0…(2) そこで質問です。 (1)は正しく、閉曲線の外周上に被積分関数が正則で無い部分があるなら、コーシーの積分定理は成立しないのでしょうか? (2)ln(z)は無限多価関数なので、どの複素関数の不定積分でもないと思ったので、Ln(z)を不定積分として用いたのですが、これは大丈夫なのでしょうか? ご回答よろしくお願いします。

  • 単関数のルベーグ積分でC⊂Dならば∫_Cfdm≦∫_Dfdm?

    なかなか定義が明記されてなくて難儀しております。 mは測度のことと思われます。 (単関数の積分) [問]f,gは非負の値を採る単関数,C,D∈Bとする時,次が成立する。 (1) C∩D=φならば∫_(C∪D) fdm=∫_Cfdm+∫_Dfdm (2) C⊂Dならば∫_Cfdm≦∫_Dfdm [(1)の証] ∫_(C∪D) fdm=a・m(C∪D) (a∈R) (∵ルベーグ積分の定義) =a(m(C)+m(D)) (∵測度空間の定義) =a・m(C)+a・m(D) =∫_Cfdm+∫_Dfdm (∵ルベーグ積分の定義) [(2)の証] ∫_Cfdm=a・m(C) (∵ルベーグ積分の定義) ここから ≦a・m(D)が言えません。 どのようにして言えますでしょうか?