jcpmutura の回答履歴

全747件中21~40件表示
  •  高校数学数列の問題です。

     以下の問題がまったくわかりません。  数列 { a[n] } を次のように定める。 (i)a[1] = 0 (ii)n = 2, 3, 4, … に対し a[n-1] ≧ n のとき a[n] = a[n-1] - n a[n-1] < n のとき a[n] = a[n-1] + n とする。 (1)a[7] を求める。 (2)a[k] = k のとき、条件 m > k、a[m] = m を満たす最小の整数 m を k で表す。 (3)a[2018]を求める。 (1)  n = 2 のとき a[1] = 0 < 2 なので   a[2] = a[1] + 2 = 2.  n = 3 のとき a[2] = 2 < 3 なので   a[3] = a[2] + 3 = 5.  n = 4 のとき a[3] = 5 ≧ 4 なので   a[4] = a[3] - 4 = 1.  n = 5 のとき a[4] = 1 < 5 なので   a[5] = a[4] + 5 = 6.  n = 6 のとき a[5] = 6 ≧ 6 なので   a[6] = a[5] - 6 = 0.  n = 7 のとき a[6] = 0 < 7 なので   a[7] = a[6] + 7 = 7.  この結果より   a[1] a[2] a[3] a[4] a[5] a[6] a[7]    0   2   5   1   6   0   7 と並べても規則性がわからないので(2)(3)はお手上げです。

  • これってコーシーの積分公式の矛盾!?

    ルベーグ積分と複素積分の関係についての質問です。 先ず,定義等を説明させてください。 (Ω,∑)を可測集合とする。 (1) μ:∑→Cを0=μ(φ)≦|μ(G)|<+∞ for ∀G∈∑. (2) {G_k}_{k=1}^∞⊂∑が互いに素 ⇒ |μ(∪_{k=1}^∞}G_k)|=∑_{k=1}^∞|μ(G_k)| を満たす時,μは複素測度をなすという。 次にB(C)をC上のボレル集合体,A:={{x+iy∈C;x∈(Re(a),Re(b)],y∈(Im(a),Im(b)]}∈2^C;a,b∈C}}を表すとする。この時, ∀a,b∈Cに対して,μ_0:A→CをA∋∀{x+iy∈C;x∈(Re(a),Re(b)],y∈(Im(a),Im(b)]}→μ_0({x+iy∈C;x∈(Re(a),Re(b)],y∈(Im(a),Im(b)]}):=Re(b)-Re(b)+i(Im(b)-Im(a))と定義すると, μ|_A=μ_0でμ:B(C)→Cが複素測度となるようなものが一意的に存在する(∵拡張定理)。 次に,測度空間(Ω,∑,μ)において,f:Ω→Cを∑可測関数とし,f_Re^±(z):=max{0,±Re f(z)},f_Im^±(z):=max{0,±Im f(z)} (複合同順)と定義すると, これらは実数値関数で Re f_k \nearrow f_Re^±(z), Im f_k \nearrow f_Im^±なる∑可測な単関数の列 (Re f_k)_{k=1}^∞,(Im f_k)_{k=1}^∞ が存在する(∵某命題)。 因みに,∑可測な単関数 Re f_kにはRe f_k(z)=∑_{m=1}^k a_m I_{G_m}(z) (但し,a_m∈R,G_m∈∑, I_{G_m}は特性関数) なる(a_m)_{m=1}^k∈R^kと(G_m)∈∑^kが存在する。 この時, ∫_Ωfμ:= sup{∑_{m=1}^k a_m Re μ(G_m)∈[0,+∞);∑_{m=1}^k a_m I_{G_m}(z)≦f_Re^+(z) for∀z∈Ω} -sup{∑_{m=1}^k a_m Re μ(G_m)∈[0,+∞);∑_{m=1}^k a_m I_{G_m}(z)≦f_Re^-(z) for∀z∈Ω} +i[sup{∑_{m=1}^k a_m Im μ(G_m)∈[0,+∞);∑_{m=1}^k a_m I_{G_m}(z)≦f_Im^+(z) for∀z∈Ω} -sup{∑_{m=1}^k a_m Im μ(G_m)∈[0,+∞);∑_{m=1}^k a_m I_{G_m}(z)≦f_Im^-(z) for∀z∈Ω}] をfのルベーグ積分という。 続いて,ルベーグ積分に基づく複素積分の定義です。 J:[a,b]→Cをジョルダン曲線とし,P:=∪_{2≦k∈N}{(p_m)_{m=2}^k∈(a,b)^k;(p_m)_{m=2}^kは増加列}, δ:P→(p,b-a)をP∋∀(p_m)_{m=2}^k→δ((p_m)_{m=2}^k):=max{p_2-p_1,p_3-p_2,…,p_{k+1}-p_k} (但し,p_1=a,p_{k+1}=b)と定義する。 この時, lim_{n→∞}∪_{(p_m)_{m=2}^k(n)∈δ^{-1}(1/n)}{ ∑_{m=1}^k(n) inf f_Re^+(J(p_m,p_{m+1})) Re μ((J(p_m),J(p_{m+1})]) - ∑_{m=1}^k(n) inf f_Re^-(J(p_m,p_{m+1})) Re μ((J(p_m),J(p_{m+1})]) + i(∑_{m=1}^k(n) inf f_Im^+(J(p_m,p_{m+1})) Im μ((J(p_m),J(p_{m+1})]) - ∑_{m=1}^k(n) inf f_Im^-(J(p_m,p_{m+1})) Im μ((J(p_m),J(p_{m+1})])} ={l} (ここでk(n)はnのよって決まる自然数) なるl∈Cが存在する)時,fは複素積分可能という。 因みに, J([a,b])は閉集合なのでルベーグ可測集合であり, inf f_Re^+(J(p_m,p_{m+1}))はルベーグ積分でのa_mに相当, そして, (J(p_m),J(p_{m+1})]はルベーグ積分でのG_mに相当してます。 さて,本題ですが、、 Jがジョルダン閉曲線の場合,始点と終点は重なってるので μ(J([a,b]))=lim_{n→∞}∪_{(p_m)_{m=2}^k(n)∈δ^{-1}(1/n)}{∑_{m=1}^k(n) μ((J(p_m),J(p_{m+1})])=0 となり,J[a,b]は零集合になると思います。 そこでf:C→CはJ([a,b])上とJの内部で正則な関数とし,c∈CはJ内部の点とする時, 1/(2πi)∫_J f(z)/(z-c)dz=f(c) となりますよね(コーシの積分公式)? しかしJ([a,b])は零集合なのでfやcのいかんにかかわらず常に積分値は0となってしまうと思うんです。 、、なので コーシーの積分公式は 1/(2πi)∫_J f(z)/(z-c)dz≡0 となってしまい矛盾が生じてしまいます。 私は何処を勘違いしてるのでしょうか?

  • これってコーシーの積分公式の矛盾!?

    ルベーグ積分と複素積分の関係についての質問です。 先ず,定義等を説明させてください。 (Ω,∑)を可測集合とする。 (1) μ:∑→Cを0=μ(φ)≦|μ(G)|<+∞ for ∀G∈∑. (2) {G_k}_{k=1}^∞⊂∑が互いに素 ⇒ |μ(∪_{k=1}^∞}G_k)|=∑_{k=1}^∞|μ(G_k)| を満たす時,μは複素測度をなすという。 次にB(C)をC上のボレル集合体,A:={{x+iy∈C;x∈(Re(a),Re(b)],y∈(Im(a),Im(b)]}∈2^C;a,b∈C}}を表すとする。この時, ∀a,b∈Cに対して,μ_0:A→CをA∋∀{x+iy∈C;x∈(Re(a),Re(b)],y∈(Im(a),Im(b)]}→μ_0({x+iy∈C;x∈(Re(a),Re(b)],y∈(Im(a),Im(b)]}):=Re(b)-Re(b)+i(Im(b)-Im(a))と定義すると, μ|_A=μ_0でμ:B(C)→Cが複素測度となるようなものが一意的に存在する(∵拡張定理)。 次に,測度空間(Ω,∑,μ)において,f:Ω→Cを∑可測関数とし,f_Re^±(z):=max{0,±Re f(z)},f_Im^±(z):=max{0,±Im f(z)} (複合同順)と定義すると, これらは実数値関数で Re f_k \nearrow f_Re^±(z), Im f_k \nearrow f_Im^±なる∑可測な単関数の列 (Re f_k)_{k=1}^∞,(Im f_k)_{k=1}^∞ が存在する(∵某命題)。 因みに,∑可測な単関数 Re f_kにはRe f_k(z)=∑_{m=1}^k a_m I_{G_m}(z) (但し,a_m∈R,G_m∈∑, I_{G_m}は特性関数) なる(a_m)_{m=1}^k∈R^kと(G_m)∈∑^kが存在する。 この時, ∫_Ωfμ:= sup{∑_{m=1}^k a_m Re μ(G_m)∈[0,+∞);∑_{m=1}^k a_m I_{G_m}(z)≦f_Re^+(z) for∀z∈Ω} -sup{∑_{m=1}^k a_m Re μ(G_m)∈[0,+∞);∑_{m=1}^k a_m I_{G_m}(z)≦f_Re^-(z) for∀z∈Ω} +i[sup{∑_{m=1}^k a_m Im μ(G_m)∈[0,+∞);∑_{m=1}^k a_m I_{G_m}(z)≦f_Im^+(z) for∀z∈Ω} -sup{∑_{m=1}^k a_m Im μ(G_m)∈[0,+∞);∑_{m=1}^k a_m I_{G_m}(z)≦f_Im^-(z) for∀z∈Ω}] をfのルベーグ積分という。 続いて,ルベーグ積分に基づく複素積分の定義です。 J:[a,b]→Cをジョルダン曲線とし,P:=∪_{2≦k∈N}{(p_m)_{m=2}^k∈(a,b)^k;(p_m)_{m=2}^kは増加列}, δ:P→(p,b-a)をP∋∀(p_m)_{m=2}^k→δ((p_m)_{m=2}^k):=max{p_2-p_1,p_3-p_2,…,p_{k+1}-p_k} (但し,p_1=a,p_{k+1}=b)と定義する。 この時, lim_{n→∞}∪_{(p_m)_{m=2}^k(n)∈δ^{-1}(1/n)}{ ∑_{m=1}^k(n) inf f_Re^+(J(p_m,p_{m+1})) Re μ((J(p_m),J(p_{m+1})]) - ∑_{m=1}^k(n) inf f_Re^-(J(p_m,p_{m+1})) Re μ((J(p_m),J(p_{m+1})]) + i(∑_{m=1}^k(n) inf f_Im^+(J(p_m,p_{m+1})) Im μ((J(p_m),J(p_{m+1})]) - ∑_{m=1}^k(n) inf f_Im^-(J(p_m,p_{m+1})) Im μ((J(p_m),J(p_{m+1})])} ={l} (ここでk(n)はnのよって決まる自然数) なるl∈Cが存在する)時,fは複素積分可能という。 因みに, J([a,b])は閉集合なのでルベーグ可測集合であり, inf f_Re^+(J(p_m,p_{m+1}))はルベーグ積分でのa_mに相当, そして, (J(p_m),J(p_{m+1})]はルベーグ積分でのG_mに相当してます。 さて,本題ですが、、 Jがジョルダン閉曲線の場合,始点と終点は重なってるので μ(J([a,b]))=lim_{n→∞}∪_{(p_m)_{m=2}^k(n)∈δ^{-1}(1/n)}{∑_{m=1}^k(n) μ((J(p_m),J(p_{m+1})])=0 となり,J[a,b]は零集合になると思います。 そこでf:C→CはJ([a,b])上とJの内部で正則な関数とし,c∈CはJ内部の点とする時, 1/(2πi)∫_J f(z)/(z-c)dz=f(c) となりますよね(コーシの積分公式)? しかしJ([a,b])は零集合なのでfやcのいかんにかかわらず常に積分値は0となってしまうと思うんです。 、、なので コーシーの積分公式は 1/(2πi)∫_J f(z)/(z-c)dz≡0 となってしまい矛盾が生じてしまいます。 私は何処を勘違いしてるのでしょうか?

  • 判別式の判別式

    どの文字について実数解をもてばよいか、わからないので質問します。 問題は、 2次方程式 x^2-5x+6=m(x-a)・・・(1)が、すべての実数mについて実数解をもつような、実数aの範囲を求めよ、です。 (1)は、x^2-(m+5)x+ma+6=0となるので、(1)が実数解をもつ条件は、 {-(m+5)}^2-4(ma+6)≧0、m^2-2(2a-5)m+1≧0・・・(2)が成り立つことである。求める条件は、(2)がすべての実数mについて成り立つことであるから。(2)の左辺をmの2次関数とみて、1/4(判別式)=(2a-5)^2-1≦0(a-2)(a-3)≦0、 2≦a≦3 疑問点は(1)が実数解をもつ条件は、というところで、これはxが実数解をもつ条件で問題文にはそのようなことは書かれていない、とおもってしまいました。 自分の考えでは、(1)を(x-2)(x-3)=m(x-a) (ア)x-a=0かつ(x-2)(x-3)=0のとき、a=2または3と、(イ)x-a≠0かつ(x-2)(x-3)≠0 m={(x-2)(x-3)}/(x-a)と考え行き詰りました。 mを未知数として考えてはいけないのでしょうか? どなたかxが実数解をもつ条件が含まれる理由と、m={(x-2)(x-3)}/(x-a)ではいけない理由を教えてくださいお願いします。

  • これってコーシーの積分公式の矛盾!?

    ルベーグ積分と複素積分の関係についての質問です。 先ず,定義等を説明させてください。 (Ω,∑)を可測集合とする。 (1) μ:∑→Cを0=μ(φ)≦|μ(G)|<+∞ for ∀G∈∑. (2) {G_k}_{k=1}^∞⊂∑が互いに素 ⇒ |μ(∪_{k=1}^∞}G_k)|=∑_{k=1}^∞|μ(G_k)| を満たす時,μは複素測度をなすという。 次にB(C)をC上のボレル集合体,A:={{x+iy∈C;x∈(Re(a),Re(b)],y∈(Im(a),Im(b)]}∈2^C;a,b∈C}}を表すとする。この時, ∀a,b∈Cに対して,μ_0:A→CをA∋∀{x+iy∈C;x∈(Re(a),Re(b)],y∈(Im(a),Im(b)]}→μ_0({x+iy∈C;x∈(Re(a),Re(b)],y∈(Im(a),Im(b)]}):=Re(b)-Re(b)+i(Im(b)-Im(a))と定義すると, μ|_A=μ_0でμ:B(C)→Cが複素測度となるようなものが一意的に存在する(∵拡張定理)。 次に,測度空間(Ω,∑,μ)において,f:Ω→Cを∑可測関数とし,f_Re^±(z):=max{0,±Re f(z)},f_Im^±(z):=max{0,±Im f(z)} (複合同順)と定義すると, これらは実数値関数で Re f_k \nearrow f_Re^±(z), Im f_k \nearrow f_Im^±なる∑可測な単関数の列 (Re f_k)_{k=1}^∞,(Im f_k)_{k=1}^∞ が存在する(∵某命題)。 因みに,∑可測な単関数 Re f_kにはRe f_k(z)=∑_{m=1}^k a_m I_{G_m}(z) (但し,a_m∈R,G_m∈∑, I_{G_m}は特性関数) なる(a_m)_{m=1}^k∈R^kと(G_m)∈∑^kが存在する。 この時, ∫_Ωfμ:= sup{∑_{m=1}^k a_m Re μ(G_m)∈[0,+∞);∑_{m=1}^k a_m I_{G_m}(z)≦f_Re^+(z) for∀z∈Ω} -sup{∑_{m=1}^k a_m Re μ(G_m)∈[0,+∞);∑_{m=1}^k a_m I_{G_m}(z)≦f_Re^-(z) for∀z∈Ω} +i[sup{∑_{m=1}^k a_m Im μ(G_m)∈[0,+∞);∑_{m=1}^k a_m I_{G_m}(z)≦f_Im^+(z) for∀z∈Ω} -sup{∑_{m=1}^k a_m Im μ(G_m)∈[0,+∞);∑_{m=1}^k a_m I_{G_m}(z)≦f_Im^-(z) for∀z∈Ω}] をfのルベーグ積分という。 続いて,ルベーグ積分に基づく複素積分の定義です。 J:[a,b]→Cをジョルダン曲線とし,P:=∪_{2≦k∈N}{(p_m)_{m=2}^k∈(a,b)^k;(p_m)_{m=2}^kは増加列}, δ:P→(p,b-a)をP∋∀(p_m)_{m=2}^k→δ((p_m)_{m=2}^k):=max{p_2-p_1,p_3-p_2,…,p_{k+1}-p_k} (但し,p_1=a,p_{k+1}=b)と定義する。 この時, lim_{n→∞}∪_{(p_m)_{m=2}^k(n)∈δ^{-1}(1/n)}{ ∑_{m=1}^k(n) inf f_Re^+(J(p_m,p_{m+1})) Re μ((J(p_m),J(p_{m+1})]) - ∑_{m=1}^k(n) inf f_Re^-(J(p_m,p_{m+1})) Re μ((J(p_m),J(p_{m+1})]) + i(∑_{m=1}^k(n) inf f_Im^+(J(p_m,p_{m+1})) Im μ((J(p_m),J(p_{m+1})]) - ∑_{m=1}^k(n) inf f_Im^-(J(p_m,p_{m+1})) Im μ((J(p_m),J(p_{m+1})])} ={l} (ここでk(n)はnのよって決まる自然数) なるl∈Cが存在する)時,fは複素積分可能という。 因みに, J([a,b])は閉集合なのでルベーグ可測集合であり, inf f_Re^+(J(p_m,p_{m+1}))はルベーグ積分でのa_mに相当, そして, (J(p_m),J(p_{m+1})]はルベーグ積分でのG_mに相当してます。 さて,本題ですが、、 Jがジョルダン閉曲線の場合,始点と終点は重なってるので μ(J([a,b]))=lim_{n→∞}∪_{(p_m)_{m=2}^k(n)∈δ^{-1}(1/n)}{∑_{m=1}^k(n) μ((J(p_m),J(p_{m+1})])=0 となり,J[a,b]は零集合になると思います。 そこでf:C→CはJ([a,b])上とJの内部で正則な関数とし,c∈CはJ内部の点とする時, 1/(2πi)∫_J f(z)/(z-c)dz=f(c) となりますよね(コーシの積分公式)? しかしJ([a,b])は零集合なのでfやcのいかんにかかわらず常に積分値は0となってしまうと思うんです。 、、なので コーシーの積分公式は 1/(2πi)∫_J f(z)/(z-c)dz≡0 となってしまい矛盾が生じてしまいます。 私は何処を勘違いしてるのでしょうか?

  • これってコーシーの積分公式の矛盾!?

    ルベーグ積分と複素積分の関係についての質問です。 先ず,定義等を説明させてください。 (Ω,∑)を可測集合とする。 (1) μ:∑→Cを0=μ(φ)≦|μ(G)|<+∞ for ∀G∈∑. (2) {G_k}_{k=1}^∞⊂∑が互いに素 ⇒ |μ(∪_{k=1}^∞}G_k)|=∑_{k=1}^∞|μ(G_k)| を満たす時,μは複素測度をなすという。 次にB(C)をC上のボレル集合体,A:={{x+iy∈C;x∈(Re(a),Re(b)],y∈(Im(a),Im(b)]}∈2^C;a,b∈C}}を表すとする。この時, ∀a,b∈Cに対して,μ_0:A→CをA∋∀{x+iy∈C;x∈(Re(a),Re(b)],y∈(Im(a),Im(b)]}→μ_0({x+iy∈C;x∈(Re(a),Re(b)],y∈(Im(a),Im(b)]}):=Re(b)-Re(b)+i(Im(b)-Im(a))と定義すると, μ|_A=μ_0でμ:B(C)→Cが複素測度となるようなものが一意的に存在する(∵拡張定理)。 次に,測度空間(Ω,∑,μ)において,f:Ω→Cを∑可測関数とし,f_Re^±(z):=max{0,±Re f(z)},f_Im^±(z):=max{0,±Im f(z)} (複合同順)と定義すると, これらは実数値関数で Re f_k \nearrow f_Re^±(z), Im f_k \nearrow f_Im^±なる∑可測な単関数の列 (Re f_k)_{k=1}^∞,(Im f_k)_{k=1}^∞ が存在する(∵某命題)。 因みに,∑可測な単関数 Re f_kにはRe f_k(z)=∑_{m=1}^k a_m I_{G_m}(z) (但し,a_m∈R,G_m∈∑, I_{G_m}は特性関数) なる(a_m)_{m=1}^k∈R^kと(G_m)∈∑^kが存在する。 この時, ∫_Ωfμ:= sup{∑_{m=1}^k a_m Re μ(G_m)∈[0,+∞);∑_{m=1}^k a_m I_{G_m}(z)≦f_Re^+(z) for∀z∈Ω} -sup{∑_{m=1}^k a_m Re μ(G_m)∈[0,+∞);∑_{m=1}^k a_m I_{G_m}(z)≦f_Re^-(z) for∀z∈Ω} +i[sup{∑_{m=1}^k a_m Im μ(G_m)∈[0,+∞);∑_{m=1}^k a_m I_{G_m}(z)≦f_Im^+(z) for∀z∈Ω} -sup{∑_{m=1}^k a_m Im μ(G_m)∈[0,+∞);∑_{m=1}^k a_m I_{G_m}(z)≦f_Im^-(z) for∀z∈Ω}] をfのルベーグ積分という。 続いて,ルベーグ積分に基づく複素積分の定義です。 J:[a,b]→Cをジョルダン曲線とし,P:=∪_{2≦k∈N}{(p_m)_{m=2}^k∈(a,b)^k;(p_m)_{m=2}^kは増加列}, δ:P→(p,b-a)をP∋∀(p_m)_{m=2}^k→δ((p_m)_{m=2}^k):=max{p_2-p_1,p_3-p_2,…,p_{k+1}-p_k} (但し,p_1=a,p_{k+1}=b)と定義する。 この時, lim_{n→∞}∪_{(p_m)_{m=2}^k(n)∈δ^{-1}(1/n)}{ ∑_{m=1}^k(n) inf f_Re^+(J(p_m,p_{m+1})) Re μ((J(p_m),J(p_{m+1})]) - ∑_{m=1}^k(n) inf f_Re^-(J(p_m,p_{m+1})) Re μ((J(p_m),J(p_{m+1})]) + i(∑_{m=1}^k(n) inf f_Im^+(J(p_m,p_{m+1})) Im μ((J(p_m),J(p_{m+1})]) - ∑_{m=1}^k(n) inf f_Im^-(J(p_m,p_{m+1})) Im μ((J(p_m),J(p_{m+1})])} ={l} (ここでk(n)はnのよって決まる自然数) なるl∈Cが存在する)時,fは複素積分可能という。 因みに, J([a,b])は閉集合なのでルベーグ可測集合であり, inf f_Re^+(J(p_m,p_{m+1}))はルベーグ積分でのa_mに相当, そして, (J(p_m),J(p_{m+1})]はルベーグ積分でのG_mに相当してます。 さて,本題ですが、、 Jがジョルダン閉曲線の場合,始点と終点は重なってるので μ(J([a,b]))=lim_{n→∞}∪_{(p_m)_{m=2}^k(n)∈δ^{-1}(1/n)}{∑_{m=1}^k(n) μ((J(p_m),J(p_{m+1})])=0 となり,J[a,b]は零集合になると思います。 そこでf:C→CはJ([a,b])上とJの内部で正則な関数とし,c∈CはJ内部の点とする時, 1/(2πi)∫_J f(z)/(z-c)dz=f(c) となりますよね(コーシの積分公式)? しかしJ([a,b])は零集合なのでfやcのいかんにかかわらず常に積分値は0となってしまうと思うんです。 、、なので コーシーの積分公式は 1/(2πi)∫_J f(z)/(z-c)dz≡0 となってしまい矛盾が生じてしまいます。 私は何処を勘違いしてるのでしょうか?

  • これってコーシーの積分公式の矛盾!?

    ルベーグ積分と複素積分の関係についての質問です。 先ず,定義等を説明させてください。 (Ω,∑)を可測集合とする。 (1) μ:∑→Cを0=μ(φ)≦|μ(G)|<+∞ for ∀G∈∑. (2) {G_k}_{k=1}^∞⊂∑が互いに素 ⇒ |μ(∪_{k=1}^∞}G_k)|=∑_{k=1}^∞|μ(G_k)| を満たす時,μは複素測度をなすという。 次にB(C)をC上のボレル集合体,A:={{x+iy∈C;x∈(Re(a),Re(b)],y∈(Im(a),Im(b)]}∈2^C;a,b∈C}}を表すとする。この時, ∀a,b∈Cに対して,μ_0:A→CをA∋∀{x+iy∈C;x∈(Re(a),Re(b)],y∈(Im(a),Im(b)]}→μ_0({x+iy∈C;x∈(Re(a),Re(b)],y∈(Im(a),Im(b)]}):=Re(b)-Re(b)+i(Im(b)-Im(a))と定義すると, μ|_A=μ_0でμ:B(C)→Cが複素測度となるようなものが一意的に存在する(∵拡張定理)。 次に,測度空間(Ω,∑,μ)において,f:Ω→Cを∑可測関数とし,f_Re^±(z):=max{0,±Re f(z)},f_Im^±(z):=max{0,±Im f(z)} (複合同順)と定義すると, これらは実数値関数で Re f_k \nearrow f_Re^±(z), Im f_k \nearrow f_Im^±なる∑可測な単関数の列 (Re f_k)_{k=1}^∞,(Im f_k)_{k=1}^∞ が存在する(∵某命題)。 因みに,∑可測な単関数 Re f_kにはRe f_k(z)=∑_{m=1}^k a_m I_{G_m}(z) (但し,a_m∈R,G_m∈∑, I_{G_m}は特性関数) なる(a_m)_{m=1}^k∈R^kと(G_m)∈∑^kが存在する。 この時, ∫_Ωfμ:= sup{∑_{m=1}^k a_m Re μ(G_m)∈[0,+∞);∑_{m=1}^k a_m I_{G_m}(z)≦f_Re^+(z) for∀z∈Ω} -sup{∑_{m=1}^k a_m Re μ(G_m)∈[0,+∞);∑_{m=1}^k a_m I_{G_m}(z)≦f_Re^-(z) for∀z∈Ω} +i[sup{∑_{m=1}^k a_m Im μ(G_m)∈[0,+∞);∑_{m=1}^k a_m I_{G_m}(z)≦f_Im^+(z) for∀z∈Ω} -sup{∑_{m=1}^k a_m Im μ(G_m)∈[0,+∞);∑_{m=1}^k a_m I_{G_m}(z)≦f_Im^-(z) for∀z∈Ω}] をfのルベーグ積分という。 続いて,ルベーグ積分に基づく複素積分の定義です。 J:[a,b]→Cをジョルダン曲線とし,P:=∪_{2≦k∈N}{(p_m)_{m=2}^k∈(a,b)^k;(p_m)_{m=2}^kは増加列}, δ:P→(p,b-a)をP∋∀(p_m)_{m=2}^k→δ((p_m)_{m=2}^k):=max{p_2-p_1,p_3-p_2,…,p_{k+1}-p_k} (但し,p_1=a,p_{k+1}=b)と定義する。 この時, lim_{n→∞}∪_{(p_m)_{m=2}^k(n)∈δ^{-1}(1/n)}{ ∑_{m=1}^k(n) inf f_Re^+(J(p_m,p_{m+1})) Re μ((J(p_m),J(p_{m+1})]) - ∑_{m=1}^k(n) inf f_Re^-(J(p_m,p_{m+1})) Re μ((J(p_m),J(p_{m+1})]) + i(∑_{m=1}^k(n) inf f_Im^+(J(p_m,p_{m+1})) Im μ((J(p_m),J(p_{m+1})]) - ∑_{m=1}^k(n) inf f_Im^-(J(p_m,p_{m+1})) Im μ((J(p_m),J(p_{m+1})])} ={l} (ここでk(n)はnのよって決まる自然数) なるl∈Cが存在する)時,fは複素積分可能という。 因みに, J([a,b])は閉集合なのでルベーグ可測集合であり, inf f_Re^+(J(p_m,p_{m+1}))はルベーグ積分でのa_mに相当, そして, (J(p_m),J(p_{m+1})]はルベーグ積分でのG_mに相当してます。 さて,本題ですが、、 Jがジョルダン閉曲線の場合,始点と終点は重なってるので μ(J([a,b]))=lim_{n→∞}∪_{(p_m)_{m=2}^k(n)∈δ^{-1}(1/n)}{∑_{m=1}^k(n) μ((J(p_m),J(p_{m+1})])=0 となり,J[a,b]は零集合になると思います。 そこでf:C→CはJ([a,b])上とJの内部で正則な関数とし,c∈CはJ内部の点とする時, 1/(2πi)∫_J f(z)/(z-c)dz=f(c) となりますよね(コーシの積分公式)? しかしJ([a,b])は零集合なのでfやcのいかんにかかわらず常に積分値は0となってしまうと思うんです。 、、なので コーシーの積分公式は 1/(2πi)∫_J f(z)/(z-c)dz≡0 となってしまい矛盾が生じてしまいます。 私は何処を勘違いしてるのでしょうか?

  • これってコーシーの積分公式の矛盾!?

    ルベーグ積分と複素積分の関係についての質問です。 先ず,定義等を説明させてください。 (Ω,∑)を可測集合とする。 (1) μ:∑→Cを0=μ(φ)≦|μ(G)|<+∞ for ∀G∈∑. (2) {G_k}_{k=1}^∞⊂∑が互いに素 ⇒ |μ(∪_{k=1}^∞}G_k)|=∑_{k=1}^∞|μ(G_k)| を満たす時,μは複素測度をなすという。 次にB(C)をC上のボレル集合体,A:={{x+iy∈C;x∈(Re(a),Re(b)],y∈(Im(a),Im(b)]}∈2^C;a,b∈C}}を表すとする。この時, ∀a,b∈Cに対して,μ_0:A→CをA∋∀{x+iy∈C;x∈(Re(a),Re(b)],y∈(Im(a),Im(b)]}→μ_0({x+iy∈C;x∈(Re(a),Re(b)],y∈(Im(a),Im(b)]}):=Re(b)-Re(b)+i(Im(b)-Im(a))と定義すると, μ|_A=μ_0でμ:B(C)→Cが複素測度となるようなものが一意的に存在する(∵拡張定理)。 次に,測度空間(Ω,∑,μ)において,f:Ω→Cを∑可測関数とし,f_Re^±(z):=max{0,±Re f(z)},f_Im^±(z):=max{0,±Im f(z)} (複合同順)と定義すると, これらは実数値関数で Re f_k \nearrow f_Re^±(z), Im f_k \nearrow f_Im^±なる∑可測な単関数の列 (Re f_k)_{k=1}^∞,(Im f_k)_{k=1}^∞ が存在する(∵某命題)。 因みに,∑可測な単関数 Re f_kにはRe f_k(z)=∑_{m=1}^k a_m I_{G_m}(z) (但し,a_m∈R,G_m∈∑, I_{G_m}は特性関数) なる(a_m)_{m=1}^k∈R^kと(G_m)∈∑^kが存在する。 この時, ∫_Ωfμ:= sup{∑_{m=1}^k a_m Re μ(G_m)∈[0,+∞);∑_{m=1}^k a_m I_{G_m}(z)≦f_Re^+(z) for∀z∈Ω} -sup{∑_{m=1}^k a_m Re μ(G_m)∈[0,+∞);∑_{m=1}^k a_m I_{G_m}(z)≦f_Re^-(z) for∀z∈Ω} +i[sup{∑_{m=1}^k a_m Im μ(G_m)∈[0,+∞);∑_{m=1}^k a_m I_{G_m}(z)≦f_Im^+(z) for∀z∈Ω} -sup{∑_{m=1}^k a_m Im μ(G_m)∈[0,+∞);∑_{m=1}^k a_m I_{G_m}(z)≦f_Im^-(z) for∀z∈Ω}] をfのルベーグ積分という。 続いて,ルベーグ積分に基づく複素積分の定義です。 J:[a,b]→Cをジョルダン曲線とし,P:=∪_{2≦k∈N}{(p_m)_{m=2}^k∈(a,b)^k;(p_m)_{m=2}^kは増加列}, δ:P→(p,b-a)をP∋∀(p_m)_{m=2}^k→δ((p_m)_{m=2}^k):=max{p_2-p_1,p_3-p_2,…,p_{k+1}-p_k} (但し,p_1=a,p_{k+1}=b)と定義する。 この時, lim_{n→∞}∪_{(p_m)_{m=2}^k(n)∈δ^{-1}(1/n)}{ ∑_{m=1}^k(n) inf f_Re^+(J(p_m,p_{m+1})) Re μ((J(p_m),J(p_{m+1})]) - ∑_{m=1}^k(n) inf f_Re^-(J(p_m,p_{m+1})) Re μ((J(p_m),J(p_{m+1})]) + i(∑_{m=1}^k(n) inf f_Im^+(J(p_m,p_{m+1})) Im μ((J(p_m),J(p_{m+1})]) - ∑_{m=1}^k(n) inf f_Im^-(J(p_m,p_{m+1})) Im μ((J(p_m),J(p_{m+1})])} ={l} (ここでk(n)はnのよって決まる自然数) なるl∈Cが存在する)時,fは複素積分可能という。 因みに, J([a,b])は閉集合なのでルベーグ可測集合であり, inf f_Re^+(J(p_m,p_{m+1}))はルベーグ積分でのa_mに相当, そして, (J(p_m),J(p_{m+1})]はルベーグ積分でのG_mに相当してます。 さて,本題ですが、、 Jがジョルダン閉曲線の場合,始点と終点は重なってるので μ(J([a,b]))=lim_{n→∞}∪_{(p_m)_{m=2}^k(n)∈δ^{-1}(1/n)}{∑_{m=1}^k(n) μ((J(p_m),J(p_{m+1})])=0 となり,J[a,b]は零集合になると思います。 そこでf:C→CはJ([a,b])上とJの内部で正則な関数とし,c∈CはJ内部の点とする時, 1/(2πi)∫_J f(z)/(z-c)dz=f(c) となりますよね(コーシの積分公式)? しかしJ([a,b])は零集合なのでfやcのいかんにかかわらず常に積分値は0となってしまうと思うんです。 、、なので コーシーの積分公式は 1/(2πi)∫_J f(z)/(z-c)dz≡0 となってしまい矛盾が生じてしまいます。 私は何処を勘違いしてるのでしょうか?

  • これってコーシーの積分公式の矛盾!?

    ルベーグ積分と複素積分の関係についての質問です。 先ず,定義等を説明させてください。 (Ω,∑)を可測集合とする。 (1) μ:∑→Cを0=μ(φ)≦|μ(G)|<+∞ for ∀G∈∑. (2) {G_k}_{k=1}^∞⊂∑が互いに素 ⇒ |μ(∪_{k=1}^∞}G_k)|=∑_{k=1}^∞|μ(G_k)| を満たす時,μは複素測度をなすという。 次にB(C)をC上のボレル集合体,A:={{x+iy∈C;x∈(Re(a),Re(b)],y∈(Im(a),Im(b)]}∈2^C;a,b∈C}}を表すとする。この時, ∀a,b∈Cに対して,μ_0:A→CをA∋∀{x+iy∈C;x∈(Re(a),Re(b)],y∈(Im(a),Im(b)]}→μ_0({x+iy∈C;x∈(Re(a),Re(b)],y∈(Im(a),Im(b)]}):=Re(b)-Re(b)+i(Im(b)-Im(a))と定義すると, μ|_A=μ_0でμ:B(C)→Cが複素測度となるようなものが一意的に存在する(∵拡張定理)。 次に,測度空間(Ω,∑,μ)において,f:Ω→Cを∑可測関数とし,f_Re^±(z):=max{0,±Re f(z)},f_Im^±(z):=max{0,±Im f(z)} (複合同順)と定義すると, これらは実数値関数で Re f_k \nearrow f_Re^±(z), Im f_k \nearrow f_Im^±なる∑可測な単関数の列 (Re f_k)_{k=1}^∞,(Im f_k)_{k=1}^∞ が存在する(∵某命題)。 因みに,∑可測な単関数 Re f_kにはRe f_k(z)=∑_{m=1}^k a_m I_{G_m}(z) (但し,a_m∈R,G_m∈∑, I_{G_m}は特性関数) なる(a_m)_{m=1}^k∈R^kと(G_m)∈∑^kが存在する。 この時, ∫_Ωfμ:= sup{∑_{m=1}^k a_m Re μ(G_m)∈[0,+∞);∑_{m=1}^k a_m I_{G_m}(z)≦f_Re^+(z) for∀z∈Ω} -sup{∑_{m=1}^k a_m Re μ(G_m)∈[0,+∞);∑_{m=1}^k a_m I_{G_m}(z)≦f_Re^-(z) for∀z∈Ω} +i[sup{∑_{m=1}^k a_m Im μ(G_m)∈[0,+∞);∑_{m=1}^k a_m I_{G_m}(z)≦f_Im^+(z) for∀z∈Ω} -sup{∑_{m=1}^k a_m Im μ(G_m)∈[0,+∞);∑_{m=1}^k a_m I_{G_m}(z)≦f_Im^-(z) for∀z∈Ω}] をfのルベーグ積分という。 続いて,ルベーグ積分に基づく複素積分の定義です。 J:[a,b]→Cをジョルダン曲線とし,P:=∪_{2≦k∈N}{(p_m)_{m=2}^k∈(a,b)^k;(p_m)_{m=2}^kは増加列}, δ:P→(p,b-a)をP∋∀(p_m)_{m=2}^k→δ((p_m)_{m=2}^k):=max{p_2-p_1,p_3-p_2,…,p_{k+1}-p_k} (但し,p_1=a,p_{k+1}=b)と定義する。 この時, lim_{n→∞}∪_{(p_m)_{m=2}^k(n)∈δ^{-1}(1/n)}{ ∑_{m=1}^k(n) inf f_Re^+(J(p_m,p_{m+1})) Re μ((J(p_m),J(p_{m+1})]) - ∑_{m=1}^k(n) inf f_Re^-(J(p_m,p_{m+1})) Re μ((J(p_m),J(p_{m+1})]) + i(∑_{m=1}^k(n) inf f_Im^+(J(p_m,p_{m+1})) Im μ((J(p_m),J(p_{m+1})]) - ∑_{m=1}^k(n) inf f_Im^-(J(p_m,p_{m+1})) Im μ((J(p_m),J(p_{m+1})])} ={l} (ここでk(n)はnのよって決まる自然数) なるl∈Cが存在する)時,fは複素積分可能という。 因みに, J([a,b])は閉集合なのでルベーグ可測集合であり, inf f_Re^+(J(p_m,p_{m+1}))はルベーグ積分でのa_mに相当, そして, (J(p_m),J(p_{m+1})]はルベーグ積分でのG_mに相当してます。 さて,本題ですが、、 Jがジョルダン閉曲線の場合,始点と終点は重なってるので μ(J([a,b]))=lim_{n→∞}∪_{(p_m)_{m=2}^k(n)∈δ^{-1}(1/n)}{∑_{m=1}^k(n) μ((J(p_m),J(p_{m+1})])=0 となり,J[a,b]は零集合になると思います。 そこでf:C→CはJ([a,b])上とJの内部で正則な関数とし,c∈CはJ内部の点とする時, 1/(2πi)∫_J f(z)/(z-c)dz=f(c) となりますよね(コーシの積分公式)? しかしJ([a,b])は零集合なのでfやcのいかんにかかわらず常に積分値は0となってしまうと思うんです。 、、なので コーシーの積分公式は 1/(2πi)∫_J f(z)/(z-c)dz≡0 となってしまい矛盾が生じてしまいます。 私は何処を勘違いしてるのでしょうか?

  • これってコーシーの積分公式の矛盾!?

    ルベーグ積分と複素積分の関係についての質問です。 先ず,定義等を説明させてください。 (Ω,∑)を可測集合とする。 (1) μ:∑→Cを0=μ(φ)≦|μ(G)|<+∞ for ∀G∈∑. (2) {G_k}_{k=1}^∞⊂∑が互いに素 ⇒ |μ(∪_{k=1}^∞}G_k)|=∑_{k=1}^∞|μ(G_k)| を満たす時,μは複素測度をなすという。 次にB(C)をC上のボレル集合体,A:={{x+iy∈C;x∈(Re(a),Re(b)],y∈(Im(a),Im(b)]}∈2^C;a,b∈C}}を表すとする。この時, ∀a,b∈Cに対して,μ_0:A→CをA∋∀{x+iy∈C;x∈(Re(a),Re(b)],y∈(Im(a),Im(b)]}→μ_0({x+iy∈C;x∈(Re(a),Re(b)],y∈(Im(a),Im(b)]}):=Re(b)-Re(b)+i(Im(b)-Im(a))と定義すると, μ|_A=μ_0でμ:B(C)→Cが複素測度となるようなものが一意的に存在する(∵拡張定理)。 次に,測度空間(Ω,∑,μ)において,f:Ω→Cを∑可測関数とし,f_Re^±(z):=max{0,±Re f(z)},f_Im^±(z):=max{0,±Im f(z)} (複合同順)と定義すると, これらは実数値関数で Re f_k \nearrow f_Re^±(z), Im f_k \nearrow f_Im^±なる∑可測な単関数の列 (Re f_k)_{k=1}^∞,(Im f_k)_{k=1}^∞ が存在する(∵某命題)。 因みに,∑可測な単関数 Re f_kにはRe f_k(z)=∑_{m=1}^k a_m I_{G_m}(z) (但し,a_m∈R,G_m∈∑, I_{G_m}は特性関数) なる(a_m)_{m=1}^k∈R^kと(G_m)∈∑^kが存在する。 この時, ∫_Ωfμ:= sup{∑_{m=1}^k a_m Re μ(G_m)∈[0,+∞);∑_{m=1}^k a_m I_{G_m}(z)≦f_Re^+(z) for∀z∈Ω} -sup{∑_{m=1}^k a_m Re μ(G_m)∈[0,+∞);∑_{m=1}^k a_m I_{G_m}(z)≦f_Re^-(z) for∀z∈Ω} +i[sup{∑_{m=1}^k a_m Im μ(G_m)∈[0,+∞);∑_{m=1}^k a_m I_{G_m}(z)≦f_Im^+(z) for∀z∈Ω} -sup{∑_{m=1}^k a_m Im μ(G_m)∈[0,+∞);∑_{m=1}^k a_m I_{G_m}(z)≦f_Im^-(z) for∀z∈Ω}] をfのルベーグ積分という。 続いて,ルベーグ積分に基づく複素積分の定義です。 J:[a,b]→Cをジョルダン曲線とし,P:=∪_{2≦k∈N}{(p_m)_{m=2}^k∈(a,b)^k;(p_m)_{m=2}^kは増加列}, δ:P→(p,b-a)をP∋∀(p_m)_{m=2}^k→δ((p_m)_{m=2}^k):=max{p_2-p_1,p_3-p_2,…,p_{k+1}-p_k} (但し,p_1=a,p_{k+1}=b)と定義する。 この時, lim_{n→∞}∪_{(p_m)_{m=2}^k(n)∈δ^{-1}(1/n)}{ ∑_{m=1}^k(n) inf f_Re^+(J(p_m,p_{m+1})) Re μ((J(p_m),J(p_{m+1})]) - ∑_{m=1}^k(n) inf f_Re^-(J(p_m,p_{m+1})) Re μ((J(p_m),J(p_{m+1})]) + i(∑_{m=1}^k(n) inf f_Im^+(J(p_m,p_{m+1})) Im μ((J(p_m),J(p_{m+1})]) - ∑_{m=1}^k(n) inf f_Im^-(J(p_m,p_{m+1})) Im μ((J(p_m),J(p_{m+1})])} ={l} (ここでk(n)はnのよって決まる自然数) なるl∈Cが存在する)時,fは複素積分可能という。 因みに, J([a,b])は閉集合なのでルベーグ可測集合であり, inf f_Re^+(J(p_m,p_{m+1}))はルベーグ積分でのa_mに相当, そして, (J(p_m),J(p_{m+1})]はルベーグ積分でのG_mに相当してます。 さて,本題ですが、、 Jがジョルダン閉曲線の場合,始点と終点は重なってるので μ(J([a,b]))=lim_{n→∞}∪_{(p_m)_{m=2}^k(n)∈δ^{-1}(1/n)}{∑_{m=1}^k(n) μ((J(p_m),J(p_{m+1})])=0 となり,J[a,b]は零集合になると思います。 そこでf:C→CはJ([a,b])上とJの内部で正則な関数とし,c∈CはJ内部の点とする時, 1/(2πi)∫_J f(z)/(z-c)dz=f(c) となりますよね(コーシの積分公式)? しかしJ([a,b])は零集合なのでfやcのいかんにかかわらず常に積分値は0となってしまうと思うんです。 、、なので コーシーの積分公式は 1/(2πi)∫_J f(z)/(z-c)dz≡0 となってしまい矛盾が生じてしまいます。 私は何処を勘違いしてるのでしょうか?

  • lim[T→∞]∮[1→T]1/(x^2+3)dx

    lim[T→∞]∮[1→T]1/(x^2+3)dxの解き方を教えて下さい。

  • f(x)が連続であるとき、つぎの関数の微分をfを用

    f(x)が連続であるとき、つぎの関数の微分をfを用いて表せ。 (1)d/dx∮[x→2x]t*f(t^2)dt これの解き方を教えて下さい。合成関数の微分を用いると書いてますがどうするのかさっぱりです。よろしくお願いします。(解答は4x*f(4x^2)-x*f(x^2)です)

  • 微分方程式の証明問題

    以下の問題が分かりません。 Aをd次の正方行列で、g=g(t,ξ)を写像g:R×R^d → R^dでξに関して全微分可能でδg(t,ξ)/δξも連続であるとする。 いま、uをR^d値の未知関数とする方程式 du/dt=Au+g(t,u) (※) を考える。あるK > 0があって|g(t,ξ)| ≦ K (t ∈ R,ξ ∈ R)が成立するとする。 この時任意のa ∈ Rに対して(※)の-∞ < t < ∞における解でu(0) = aとなるものが存在することを示せ。 さらにAを実対称行列で全ての固有値は負であるとする。このとき、aを適当に選ぶことでu(t)は-∞ < t < ∞で有界になることを示せ。 この問いで、du/dt=Au+g(t,u)の解はu(0)=u_0として u(t)=(u_0)e^(At)+∫[0→t]e^{A(t-s)}g(s,u(s))ds と表せると思いますが、u(0) = aとなるのは u(t)=ae^(At)+∫[0→t]e^{A(t-s)}g(s,u(s))ds となるので解が存在するとしても良いのでしょうか? そして、「Aが実対称行列で~」の方が良く分かりません。教えてくれますと嬉しいです。

  • 微分方程式の証明問題

    以下の問題が分かりません。 Aをd次の正方行列で、g=g(t,ξ)を写像g:R×R^d → R^dでξに関して全微分可能でδg(t,ξ)/δξも連続であるとする。 いま、uをR^d値の未知関数とする方程式 du/dt=Au+g(t,u) (※) を考える。あるK > 0があって|g(t,ξ)| ≦ K (t ∈ R,ξ ∈ R)が成立するとする。 この時任意のa ∈ Rに対して(※)の-∞ < t < ∞における解でu(0) = aとなるものが存在することを示せ。 さらにAを実対称行列で全ての固有値は負であるとする。このとき、aを適当に選ぶことでu(t)は-∞ < t < ∞で有界になることを示せ。 この問いで、du/dt=Au+g(t,u)の解はu(0)=u_0として u(t)=(u_0)e^(At)+∫[0→t]e^{A(t-s)}g(s,u(s))ds と表せると思いますが、u(0) = aとなるのは u(t)=ae^(At)+∫[0→t]e^{A(t-s)}g(s,u(s))ds となるので解が存在するとしても良いのでしょうか? そして、「Aが実対称行列で~」の方が良く分かりません。教えてくれますと嬉しいです。

  • 中二 数学 距離速さの問題です

    Aの家、Bの家、学校がこの順にまっすぐな道に並んでいる。 AとBがそれぞれの家から同時に出発して学校へ向かうとき、 Aが毎分90m進むと15分後にBに追いつき、 Aが毎分75mで進むと24分後にBに追いつく Aの家とBの家との距離(m)、Bの速さ(m/分)をそれぞれ求めよ よろしくお願いします。

  • ある大学の数学の過去問です

    ある大学の数学の過去問です わかる人 教えてください

  • ∮[0→1](12x+12)/(x^3+8)dxの

    ∮[0→1](12x+12)/(x^3+8)dxの値は何でしょうか。部分分数分解で12(x+1)/(x+2)(x^2-2x+4)まではできたのですが、(これも合ってるか怪しいですが...)ここから積分をしようとすると第2項がぐちゃぐちゃになります。(ちなみに第1項は(-1/16)log(3/2)になりました)よろしくお願いします。

  • 内角と外角の性質

    下の三角形の載っている問題なのですが、解説の意味が分かりません。 僕は128-360=232° 360-55-40-232=33°だと思います。 55°と40°とx°で128°になるのか分かりません。外角の性質なら2角ではないのでしょうか?

  • 不定積分∮(x+5)/(x^2+5)dxの途中式を

    不定積分∮(x+5)/(x^2+5)dxの途中式を教えて下さい。よろしくお願いします。

  • ∮[-1→1]√(4-x^2)dxでx=2sin(

    ∮[-1→1]√(4-x^2)dxでx=2sin(t)に置換した後のtの積分区間が分からないので教えて下さい。よろしくお願いします。