検索結果
1階微分方程式
- 全てのカテゴリ
- 全ての質問
- 微分積分について(一階線形微分方程式)
この問題の解き方について教えて下さい。 問、曲線y = f(x)上の任意の点P(x , y)における 接線の傾きがPのx座標とy座標の和に等しい。 このような曲線のうち原点を通るものの方程式を答えよ。 Ans. y=e^x - x -1 (自分の解いたやりかた(答えがどうしても一致しないので間違っているところを教えて下さい。)) dy / dx = x + y・・・(1) (dy / dx) - y = x 斉次微分方程式(dy / dx) - y = 0を解く y' = y 変数分離で解くと y = C e^x (Cは積分定数) Cをxの関数uと置き換えて y = u e^x y' = u' e^x + u e^x これを(1)へ代入 u' e^x = x u' = x e^(-x) ∫du = ∫e^(-x) dx これを解くと u= -x e^(-x) + e^(-x) - C y=ue^x=-x + 1 - Ce^x 条件より C=1 ∴y= 1 - e^x + 1
- 1階常微分方程式の記述解釈
関数 y(x) に関する1階常微分方程式の初期値問題、 y(a) = b, dy / dx = f(x, y) を考えます。 ********************** という問題の一節について、この問題の意味(記述)がよくわかりません。なんというか、 y(x) の"y"という文字と同じ"y"が f(x, y)のパラメータ部分にもでてきて、いったいこの "y" はなんなんだ! と、もう頭がパニック中です。 おそらく、たとえば関数 g(x) と書いた時の g がなんなのかを理解していないところに原因あると思うのですが・・。 この式の具体例があればいいのですが、それも教科書に載っていなくて。。 超くだらない質問ですが、この記述の解釈の仕方を教えてください。
- 一階の微分方程式の問題です
( 3y^2 + 2y + 3x^2 ) dx = 2x dy ------------------------------------------------- 単純に、解けません。涙 どなたかご教授お願いいたします。
- 1階線形微分方程式の問題です。
自分の持ってる参考書(サイエンス社の基本微分積分)の dy/dx+ycosx=sinxcosx を解けという問題についてです。 解説で y = exp(-∫cosx dx){∫sinxcosx exp(∫cosx dx)dx+C} = exp(-sinx){∫sinxcosx exp(sinx)dx+C} と書かれているところがあります。上の式になるのは一般解の式に代入する形でそのようになるのはわかるのですが、そのあと下の式にどうしてなるのかがわかりません。 自分的には 下の式=exp(-sinx + C1){∫sinxcosx exp(sinx + C2)dx+C} というようにC1やC2といった積分定数が出てくるのではないかと思うのですが、どうして参考書には積分定数がないのでしょうか? ちなみに、この問題の答えは y = sinx - 1 + Cexp(-sinx) (Cは積分定数) となっています。
- 1階線形微分方程式について
こんばんは。よろしくお願いします。 微分方程式で、下記の y’/y = α/(1-x) を解こうと昔の教科書を紐解いているのですが、 一向に進みません。 両辺にdxをかけてy、xで積分して logy = α/2・x^2-αx+C ↓ y = e^(α/2・x^2-αx+C) まで出たのですが、右辺の()内が2次式になってて ここで行きづってしまいました。 この後ってどうすればよいのでしょうか? どうぞ教えてください。
- 1階線形常微分方程式 定数係数非斉次線形微分方程式
微分方程式の解法に苦戦しています。 お力添えよろしくおねがいします。 dy/dx + ax = b exp(cx) cos(dx) + e exp(cx) sin(dx) + f a, b, c, d, e, fは定数 この微分方程式の解法がわかりません。 手元にある参考書には基本形として、 dy/dx + ax = b exp(cx) cos(dx)及び、dy/dx + ax = b exp(cx) sin(dx) の解法は記述されていますが、 これをどのように応用すれば良いのかが記述されていません。 容易な問題だとは思いますが、解法の手順を具体的にご説明いただくと幸いです。 よろしくおねがいします。
- 一階微分方程式について質問です
一階微分方程式の勉強をしているのですが 変数分離形での特異解はy=n(nは定数)の形になり 同次形での特異解はy=nx(nは定数)の形になり 完全形では特異解は出ない という認識であってますか?
- ベストアンサー
- 数学・算数
- 199505220830
- 回答数1
- 1階線形偏微分方程式の一般解
数学のことでちょっと皆様のお知恵を拝借いたしたく質問します。 次の偏微分方程式の一般解の求め方を教えてください。 ∂T(x,t)/∂t + (q(t)/S)(∂T(x,t)/∂x) = c(T_w(x,t) - T(x,t)) c,S:定数 僕の所有する参考書によるとこの種の方程式は ラグランジュの偏微分方程式と呼ばれていて、 ちょっとだけ一般解の求め方が書いてありました。 しかし、どうしても一般解にたどりつけません。 その方法とは、偏微分方程式 P(x,y,z)(∂z/∂x) + Q(x,y,z)(∂z/∂y) = R(x,y,z) に対して連立補助方程式 dx/P = dy/Q = dz/R を解いた解を f(x,y,z) = a, g(x,y,z) = b (a,bは積分定数) とする。φを任意の関数として、一般解は φ(f,g) = 0 である。 という解法です。しかし、T_wが邪魔でうまくいかないです。 詳しい参考書を手に入れようにも近くに本屋がないのでお手上げです。 どなたかご教授お願いしますm( _ _ )m
- 締切済み
- 数学・算数
- stateSpace
- 回答数1
- 一階線形微分方程式の解の挙動
x(t)+a(t)∫[s=0,t] x(s)ds =b(t) (t>=0) は、a(t),b(t) がともに連続実数値で有界、 inf[t>=0]a(t)>0, lim[t->∞]b(t)=0 の時 lim[t->∞]x(t)=0 となるらしいんですが、証明できません。a(t)が定数の時はわかるんですけど、今は収束するかどうかすらわからないし‥。与えられた積分方程式は実はただの一階線形微分方程式になるんで、簡単かなと思ったんですけど手強いです。助けてください。
- 微分方程式で一階問題なのですが・・・。
微分方程式の問題なのですが、勉強不足の為よくわからないです・・・。 問題は 1) 初期値問題 xy'=y-xtan(y/x) y(1)=π/2 同次系だと思い、xで割った後、y/xをuとおきその結果 u'x=-tanuまで出たのですが、その後の計算がわかりません・・。 2) y'+(e^x)y=3e^x の時、lim(x→∞)y を求めよ。 これは、線形微分方程式だと思い、一般解の公式を使ったのですが、自然対数の積分がよくわからずに挫折しました・・・。 3) y'=(y-1)(xy-y-x)の一般解を求めよ。 これは、どの手法でとけばいいのかわからず解けませんでした・・・。変数分離系なのでしょうか?? 沢山質問してしまってすみません。どれかひとつだけでもいいので教えてください。よろしくお願いします。
- 2階斉次線形微分方程式 P(x')=-1/x' ?
x^2 (d^2 y)/(dx^2) - x dy/dx + y = 0 の一般解を求めよう。 前の例で示したように、x^2 (d^2 y)/(dx^2) - x dy/dx + y = 0 の基本解の1つは y_1 = x である。これと1次独立なもう1つの基本解は、式(3.9)を用いて次のように求まる。 y_2 = y_1 ∫ 1/y_1^2 exp (-∫P(x') dx') dx = x ∫ 1/x^2 exp (-∫(-1/x') dx') dx ← P(x') = (-1/x') ? = x ∫ 1/x^2 exp (log x) dx = x ∫ x/x^2 dx = x log |x| よって、一般解は y = c_1x + c_2x log |x| となる。 ・・・という問題で、なぜ P(x') = (-1/x') になるのか分かりません。 この本ではx'というのは、その前のページに書かれている解説で初めて出てきました: (d^2 z)/(dx^2) + (P(x) + 2 1/y_1 dy_1/dx ) dz/dx = 0 で、X(x) = dz/dx とおいて X(x)についての微分方程式を次のように解くことができる。 dX/dx + (P(x) + 2 y_1'/y_1) X = 0 dX/X = - (P(x) + 2 y_1'/y_1) dx log X = -∫(P(x') + 2 y_1'/y_1) dx' + C ←ここ ・・・と続くのですが、いまいちここが理解できていません。 これはきっと、左辺はXで、右辺はxで、両辺を積分したんですよね? このx'というのは元の数字の微分したものだと思うんですけど、 上の問題のように P(x) = - x の場合、x'は幾つになりますか? そして、なぜ P(x') = (-1/x') になるんですか? 教えてください。よろしくお願いします。
- 一階の線形微分方程式 の形について、
この前の授業で先生が、求めるものがy(t)にもかかわらず y(t) = C * x'(t) の式について、 これは一階の線形微分方程式 といっていました。 ここで疑問に思ったのが、 私は、求めるのがy(t)ならば、yのみの式の形に着目して、 y(t) = C * x'(t)は 0階の微分方程式 となると思っていたのですが、 このときも一階の微分方程式といえるのでしょうか、 先生が正しいとすると、、、 求めるのがy(t)のとき y''(t) + y(t) = x'''(t) このような式は何階になるのでしょうか、、、 よろしくおねがいします。
- 微分方程式の一階化について質問です。
微分方程式の一階化について質問です。 x''+ax'+a^2x=0という微分方程式('は時間微分)を一階化して行列表現せよ。 という問題に出会いました。 あくまでこれは問題の出だし部分でその後、固有値を求めたりなど色々続くのですが 正直、初めて見る問題で第一問目が一番分かりません。 数学に詳しい方、どうかよろしくお願い致します!!
- 一階常微分方程式の本の答えと比較
次の微分方程式の一般解を求めよ。 y^2 + x^2 dy/dx = 2yx (y/x)^2 + dy/dx = 2 y/x dy/dx = x du/dx + u から u^2 + x du/dx + u = 2u すなわち x du/dx = -u^2 + u これを変形して 1/(u^2-u) du/dx = -1/x ←ここから自分の答えとは異なり始めます 両辺を積分して ∫( 1/(u^2-u) ) du = -∫1/x dx ∫( 1/(u-1) - 1/u ) du = -∫1/x dx から log|(u-1)/u| = -log|x| + C これより C' = e^C (u-1)/u = C'/x u=y/x を代入すると (y-x)/y = C'/x 更に整理して y = x^2/(x-C') と、本の答えには書いてあります。 自分の答えは x du/dx = -u^2 + u これを変形して 1/(u-u^2) du/dx = 1/x ←ここから本の答えとは異なり始めます 両辺を積分して ∫( 1/(u-u^2) ) du = -∫1/x dx ∫( 1/u - 1/(1-u) ) du = ∫1/x dx から log|u/(1-u)| = log|x| + C これより C' = e^C u/(1-u) = C'x u=y/x を代入すると y/(x-y) = C'x 更に整理して y = C'x(x-y) y = C'x^2-C'xy 1 = C'x^2/y-C'x 1 + C'x = C'x^2/y (1 + C'x)/C'x^2 = 1/y y = C'x^2/(1 + C'x) になりました。 本の答えとは等価ではないようです。 でも、両辺の符号を変えなかっただけなので、自分の計算方法でも正しい答えが得られると思っています。どこから間違ってしまったのか教えてください。どうかお願いします。
- 一階常微分方程式の問題なんですけど・・・
今、自分でいろいろな問題を解いてるのですが、次の問題で行き詰ってしまいました・・・ 一階常微分方程式 u' = 4|u|^(3/4) ・・・・・(※) を考える。 (1)v(0) = 0 , v(t) > 0 for (0<t<∞) をみたす[0 , ∞) の(※)の解vを求めよ。 (2) (1)で得られたvに対し、 v⁺(t)=0 for (-∞<t<=0) , =v(t) for(0<=t<∞) v⁻(t)=-v(-t) for(-∞<t<=0) , =0 for(0<=t<∞) とおくとき、v⁺、v⁻は※の解であることを示せ。 (3)R上での※の解を出来るだけ多く見つけよ。 です。>< 特に(1)(2)に関してよくわかりませんでした。わかる方がいたら、よろしくお願いします><
- ベストアンサー
- 数学・算数
- be-to-ben-kun
- 回答数1
- 1階常微分方程式の問題が解けません
大学の課題で出されたベルヌーイ型の微分方程式がどうしても解けません。 次のような問題です dx/dt-2(t^2+1)x=-2x^2/t u=x^-1 とおいて同時線形微分方程式にすればいいのかと思ったのですが、 積分が難しくてとてもではないでけど解答の値がでてきませんでした。 解答の値は、 x=±(t^3/4+t/2+c/t)^(1/2) c:任意定数 となっています。 uの置き方をもっと工夫すべきなのか、単に積分計算が出来ていないだけなのか分かりません。 このように数式を書くのが初めてなので分かり辛い書き方ですみません。 お手数ですがよろしくおねがいします。
- 締切済み
- 数学・算数
- komechan_v
- 回答数1
- 1階線形微分方程式の公式は暗記するもの?
現在、微分方程式を勉強しています。 1階線形微分方程式の公式(y=1/h(x){∫g(x)h(x)+C})は暗記するものなのでしょうか? 導き方が覚えられるくらいのものなら、わざわざ丸暗記はしたくないのですが…。
- 1階微分方程式の一般解を求める問題です。
y' = e^(-x+2y) の一般解を求めよ。 という問題です。 y' = e^(-x) * e^2y ∫e^(-2y)dy =∫e^(-x)dx (-1/2) e^(-2y) = -e^(-x) + c e^(-2y) = 2e^(-x) -2c ここで詰みました。 ここからどのように一般解を求めていくのかわかりません。 よろしくお願いします。
- 微積-一階微分方程式の解き方について
下記の問題について解き方(過程)を教えてください。 問、一般解を求めよ。 1.y' sin x - y cos x = 1 (Ans. y= -cos x + C sin x) 2.y' cos^2 t = sin t sin^2 y(Ans. cot y + (1/cos t) = C) 3.2tyy' = 1 - y^2(Ans. y^2=1-(C/t)) <自分の解いたやり方> 1.y'=(cos x / sin x)y + 1 y'=(cos x/sin x)y とおく ∫(1/y) dy = ∫(cos x/ sin x) dx y=u sin x (1) uを求めて(1)式へ代入 2.y' = (sin t / cos^2 t)sin^2 yと置き変数分離で解きました。 3.同次形として解きました。 よろしくお願いします。
- 1階非同次微分方程式の一般解について
1階非同次微分方程式の一般解の解釈について不明点がございます。 一般化した1階非同次微分方程式:y' + p(x)y = q(x)の一般解は y = e^(-∫p(x)dx) * ∫q(x)e^(∫p(x)dx)dx + ce^(-∫p(x)dx) で表されるのは理解できるのですが、この一般解が非同次微分方程式の特殊解と同次微分方程式の一般解の和になっていることが理解できません。 つまり右辺の1項目、e^(-∫p(x)dx) * ∫q(x)e^(∫p(x)dx)dx が非同次方程式の特殊解になる理由がわかりません。 個人的に考えるに右辺の2項目のcが-∞~∞まで全ての値をとることが可能なので c=0の場合に、右辺の1項目は非同次方程式の特殊解になる、と勝手に推測しているのですがその考えでよろしいでしょうか? どなたかその辺詳しい方がいらっしゃいましたら是非ご教授お願い致します。