検索結果
微分
- 全てのカテゴリ
- 全ての質問
- 微分する
すいません、ミクロ経済学の初歩の初歩について、誰か教えてくれませんか? ① 限界効用とは、点のことですか? つまり、「効用曲線」の「傾き」を、ある特定量xで微分した特定点における傾きを、限界効用と呼ぶ。という理解で合ってますか? ②「効用関数」と「効用曲線」とはどんな関係にあるのでしょうか?効用関数f(x)のXに、具体的な数字を代入した結果が、効用曲線になる、という理解で合ってますか? そして、もしそういう理解であっているのだとした場合、「逓減の法則」にしたがった曲線になると思うんですが、代入する具体的な数字に、逓減の法則はどのように反映させればよいのでしょうか? y=f(x)だと、ただの直線になると思うんですが。 ③ そもそも、「xで」「微分する」という言い方が、全くしっくり来なくてモヤモヤします。上のように、「とある特定量xの時点での傾きを求める」という言い方で理解しても良いでしょうか? また、「yで微分する」という場合もあるのでしょうか?
- 偏微分
z = sin^2(x+y)-sin^2(x)-sin^2(y) コレを偏微分したいのですが・・・。 sin^2(x)の微分は・・sin(x)cos(x)ではないんですか?
- ベストアンサー
- 数学・算数
- akatukinoshoujyo
- 回答数2
- 微分積分
高2の子が「微分・積分の数式を解くのって超面白い!これまでの数学人生の中で一番だ!昨夜は夢の中にまで出てきたので解いてた。」と言います。数学はスキらしいのですが授業についていけなくてずーっと低空飛行してました。親としては「そりゃあ良かったね」と言うしかないのですが・・・ 数学ってそんなに狭い範囲でこの分野だけがスキとか得意とかあるんですか?(私は全くの文系なんでてんでわかりません)。数学の得意ないわゆる理系さんは数学全般がとにかくよく出来るというイメージなんですが・・・ ついでにこういう分野は特に将来に向けて役立つ事があるんでしょうか?(この質問はかなりバカ親っぽいなあと思いつつ・・あえて質問します)
- 偏微分
V= e/4πε (1/√[{(x-a)^2} + y^2 + z^2]) で e,π,εは定数 この時、 -∂V/∂x はという問題で e/4πε( (x-a) / (x-a)^2 + y^2 +z^2)^3/2 という答えになんでなるんですか。 (x-a)^2の部分だけに注目して微分するっていう感覚で3/2が肩にかかるのはわかるのですがどうして x-aが分子に来るのかもわかりません。 この偏微分の手順を教えてください。
- ベストアンサー
- 数学・算数
- hiromi_325
- 回答数2
- 積分?微分?
f(x) = x^2 * exp(-ax^2)の時, ∫f(x)xdx を求めるたいのですが, ヒントとしてx^2 * exp(-ax2) を微分せよと 書いてありました. 微分していくと,f(x)x が出てきて,これを積分して 求めるというやり方だと思うのですが, [x^2 * exp(-ax^2)](0-∞)が出てきて,詰まりました. どのように計算すればよいのでしょうか? それとも,微分の過程が間違っているのでしょうか? どなたかわかる方よろしくお願いします. 出典: http://www.nucleng.kyoto-u.ac.jp/people/ikuji/edu/vac/app-A/speed.html
