円形リングにビオ・サバールの法則を適用した時の力の発散について

このQ&Aのポイント
  • 円形リング自身にビオ・サバールの法則を適用した時、力の発散について教えてください。
  • 円形リング中心を原点にして半径をa、リング上の一点と原点とx軸の角をθとすると、リングの座標(a,0)にかかる力は計算の主要部だけを取った式で表されます。
  • この式を計算し、さらに定数部を除くと、発散してしまうことがわかります。しかし、この現象の理解にはどのようなアプローチが必要でしょうか。
回答を見る
  • ベストアンサー

円形リング自身にビオ・サバールの法則を適用した時の力の発散

について教えて下さい。以前、質問にあったように思うのですが無回答だったと思います。 円形リング[c]の中心を原点にして半径をa,リング上の一点と原点とx軸の角をθ。 単位ベクトルをi~,j~,k~とするとリングの座標(a,0)にかかる力は 計算の主要部だけをとり∫[c]j~×(ds~×r~)/r^3となる。ここで r~=a(1-cosθ)i~-asinθj~ ds~=adθ(-sinθi~+cosθj~) これを計算し、さらに定数部を除くと ∫[0,2π]dθi~/√(1-cosθ)=(2/√2)∫[0,π]dθi~/sin(θ/2) となって発散してしまうのですが、これはどのように理解すれば よいのでしょうか。

質問者が選んだベストアンサー

  • ベストアンサー
  • eatern27
  • ベストアンサー率55% (635/1135)
回答No.1

無限に細い導線を考えているのが原因じゃなかったかな。

endlessriver
質問者

お礼

さっそく、ありがとうございます。もう計算力も落ちましたがご指摘の方向で考えてみます。

その他の回答 (1)

  • eatern27
  • ベストアンサー率55% (635/1135)
回答No.2

あ、いや、別にそんな大それた計算は必要ありません。 力以前に、導線上の磁場が発散していますよね。この発散がなくなれば、力も発散しない事になります。 例えば、直線電流からr離れた地点の磁場は、1/rに比例するので、導線の位置(r=0)での磁場は、無限大に発散している事になります。じゃぁ、本当にそうなっているのかと言うと、そんな事ありません。なぜなら、1/rに比例するというのは、導線の外部の話であって、導線内部には適用できません。もしも、電流が導線内部を一様に流れていれば導線の内部の磁場は中心軸からの距離rに比例するので導線内部の磁場は有限です。(他の電流分布でも、電流密度が有限である限り、導線内部の磁場は有限です) 円電流でも同じ理由から、導線内部の磁場は有限で、導線が受ける力も有限となるはずです。

endlessriver
質問者

お礼

ありがとうございます。なるほど、ビオ・サバールよりアンペールの法則で考えることにしました。

関連するQ&A

  • ビオ サバールの法則

    ビオ サバールの法則で 下のウィキのサイトで見たのですが、 真ん中に定義式H=∫j(r)・・・と書いてあるのですが 下の問題を解いている式を見ると H=(1/4π)∫I・sinθ・ds/r^2 といきなりsinθが出てきたのですか? http://ja.wikipedia.org/wiki/%E3%83%93%E3%82%AA%E3%83%BB%E3%82%B5%E3%83%90%E3%83%BC%E3%83%AB%E3%81%AE%E6%B3%95%E5%89%87

  • アンペールの法則とビオ・サバールの法則

    アンペールの法則とビオ・サバールの法則で疑問があるので質問です。 まず無限に長い直線電流がr離れた点Pに作る磁束密度Bはビオ・サバールの法則により B=μ0I/2πr アンペールの法則により B=μ0I/2πr となりビオ・サバールの法則とアンペールの法則は一致するとわかるのですが、ここで無限じゃなくて有限の長さAB(電流の向きはA→B)にした場合アンペールの法則は変わらないと思うんですがビオ・サバールの法則は B=μ0I(cosθA-cosθB)/4πr でアンペールの法則と一致しないんですがどうしてなんでしょうか? そもそもアンペールの法則で出すBが変わらないというのが間違いなんでしょうか? アホな質問かもしれませんがお願いします

  • 直線電流とアンペアの周回積分の法則&ビオ-サバールの法則

    半径a,有限の長さLを持つ直線導体に電流Iが導体断面に一様に流れている. この時, 1)r≫aのとき aは無視して考える事ができ, 磁界はビオ-サバールの法則から H=(I/4πr)・(cosθ1+cosθ2)と求まります. 2)r≦aのとき アンペアの周回積分の法則から    H・2πr=πr^2・(I/πa^2) ∴H=Ir/2πa^2 と求まります.  1)の時アンペアの周回積分の法則を使わないのは見えないループの電流の存在を考えているため磁界が位置に無関係に一定にならないからだと思いますが,2)でアンペアの周回積分の法則が使えるのは何故ですか?? もっと簡単に言うと,導体外ではアンペアの周回積分の法則がうまく使えないのに,導体内では何故アンペアの周回積分の法則が使えるのでしょうか??

  • ベクトル場の面積分の問題です。

    3次元のベクトル場(i,j,k) である、A=i+j , B=yi+xj それぞれについて、 (1)yz平面上の単位円についての面積分を求めよ。ただし、単位法線ベクトルの向きはx方向とする。 (2)原点中心の半径1の球の表面についての面積分を求めよ。 という問題なのですが、 積分する面をパラメータ表示してやってみたところ、 (1)(x,y,z)=(0,cosθ,sinθ) (0≦θ≦2π) N=(1,0,0) (ベクトルを大文字で表しました;) A・N=(1,1,0)・(1,0,0)=(1,0,0) B・N=(y,x,0)・(1,0,0)=(y,0,0) ∮A・NdS の dsの部分の求め方がいまいちわかりません; (2)では (x,y,z)=(sinθcosφ,sinθsinφ,cosθ) (0≦θ≦π,0≦φ≦2π) ds=|(cosθcosφ,cosθsinφ,-sinθ)×(-sinθsinφ,sinθcosφ,0)| dθdφ =sinθ dθdφ N=(x/2,y/2,z/2) A・N=x/2=(1/2)・sinθcosφ ∮A・NdS=(1/2)・∬(sinθ)^2・cosφ dθdφ =(π/4)・∫cosφ dφ =0? B・N=xy=(1/2)・(sinθ)^2・sin2φ ∮B・NdS=(1/2)・∬(sinθ)^3・sin2φ dθdφ =(4/3)・∫sin2φ dφ =0? となったのですがどこが間違っているかわかりません; どうか教えてくださいm(__)m

  • ベクトル解析

    ガウスの発散定理のトコなんですけど・・・ まず直接面積分で求めたいんです。 ΓをR^3の原点を中心とする半径a(>0)の球面の北半球部分とします。 Γ上のベクトル場f=2xyi+2yzj+z^2kなんです。 (i,j,kは単位ベクトル) この場合の極座標表現って、 x→asinθcosφ?  (asinθ)*(acosφ)??? yも同様で、asinθsinφ?   (asinθ)*(asinφ)??? zは・・・まー分かりました^^acosθですよね^^ 回答お願いします。

  • ビオ・サバールの法則とアンペアの周回積分の法則

    以前、ここ↓で質問があったのですが、いまいち納得がいきません。 http://oshiete1.goo.ne.jp/kotaeru.php3?q=508268 (問1)円形コイルで巻数50回、平均半径10cmに3Aの電流が流れている時、 コイル中心の磁界の強さはいくらか? (答1)H=NI/2r=50x3/2x0.1=750A/m (問2)円形コイルで平均半径15cm、300回巻かれた状態でコイルの中心に800A/mの磁界を作るには電流をいくら流せば良いか? (答2)I=2πrH/N=2xπx0.15x800/300=2.51A 問2はπがいらない気がするのですけども…。 どうなのでしょうか? ビオ・サバールの法則とアンペアの周回積分の法則の使い方がよくわかりません。 というのはですね、問題を解く上で、どちらを使っても結局同じ答えになりますよね。なので、その問題に対して、簡単なほうを使えばよいということになりますが、「この問題ならビオ・サバールだ!、この問題ならアンペアの周回積分だ!」というのはありますか? 以前の質問の回答のように、 『磁界が位置に依存⇒ビオ-サバール』 『磁界が一様⇒アンペア』 で良いのでしょうか? それとも、 導体が有限(円形コイル)⇒ビオ・サバール 導体が無限(直線導体)⇒アンペアの周回積分 でしょうか? よろしくお願いします。

  • 立体の体積

    球面x^2+y^2+z^2=a^2、円柱x^2+y^2=ay (a>0)および平面z=0で囲まれた部分の体積についてです。答えは(π/3-4/9)a^3です。 x=rcosθ、y=rsinθとして 0≦r≦asinθ 0≦θ≦π/2で2重積分すると、答えと一致しました。 しかし、はじめ自分は、0≦θ≦πで計算していたため一致しませんでした。何故0≦θ≦π/2となるのでしょうか? 教えて下さい。 0≦θ≦πの場合  V=2∬[D]√(a^2-x^2-y^2)dxdy  =2∫[o→π]{∫[o→asinθ]r√(a^2-r^2)dr}dθ  r^2=tと置換して  =∫[o→π]{∫[0→a^2sin^2θ]√(a^2-t)dt}dθ  =2a^3/3∫[0→π](1-cos^3θ)dθ  cos^3θ=(1-sin^2θ)cosθとしてsinθ=pと置換して  =-2a^3/3∫[0→π]cosθdθ+2a^3/3∫[0→0]p^2dp+   2a^3/3∫[0→π]1dθ ・・・*  =2a^3π/3 答えと一致しない。 0≦θ≦π/2の場合  *について  -2a^3/3∫[0→π/2]cosθdθ+2a^3/3∫[0→1]p^2dp+  2a^3/3∫[0→π/2]1dθ   =(π/3-4/9)a^3  答えと一致します。

  • sinθ-cosθをrsin(θ+α)の形にする

    sinθ-cosθをrsin(θ+α)の形に変形する仕方について。 asinθ+bcosθ=rsin(θ+α) ただし、r=√(a^2+b^2) sinα=b/r , cosα=a/r という定義があるのは分かるのですがαの値の正負の判別のしかたがわかりません。 今回、定義に従って計算するとα=π/4となるのですが、答えには√2sin(θ-(π/4))とありました。 αの前にある符号はasinθ+bcosθはaとbの符号の組み合わせで決まるのでしょうか? 計算ミスの可能性もあります... 回答のほうよろしくお願いします。

  • シータ 計算

    θ=30°、θ=120°が共にasinθ+bcosθー1=0を満たすように定数a,bの値を求めよ。 と、いう問題です。 sin^2θ+cos^2θ=1 を利用するのかと思ったのですが・・・。 asinθ+bcosθー1=0   asinθ+bcosθ=1 (asinθ+bcosθ)^2=1^2 a^2 sin^2θ+b^2 cos^2θ+2asinθbcosθ=1 a^2+b^2×1+2asinθbcosθ=1 a^2+b^2+2asinθbcosθ=1 と、ここまで計算しましたが、ここからがよく分からず、計算方法もあっているのか不安です。 また、θの値が与えられており、θにどう代入?してよいのかも分かりません。 数学に強い方、教えてください。

  • 等速円運動

    2次元平面内においてデカルト座標を用いた際、物体の位置が x(t)=rcos(ωt+θ) y(t)=rsin(ωt+θ) (但しr、ω、θは定数) で表される運動は等速円運動と呼ばれる。以下の問に答えよ。 (1)物体の軌道を表す式を書け。 (2)物体の速度と加速度を計算せよ。 (3)位置ベクトルと速度が直行することを示せ。 という問題ですが、(以下に示すr(t)、v(t)、a(t)はベクトル量とする。i、jはx軸、y軸の単位ベクトル。) (1)は位置ベクトルを求めればいいんでしょうか? 位置ベクトルr(t)=x(t)i+y(t)j =r{cos(ωt+θ)i+sin(ωt+θ)j} (2)速度ベクトルv(t)=dr(t)/dt=rω{-sin(ωt+θ)i+cos(ωt+θ)j} 加速度ベクトルa(t)=dv(t)/dt=-rω^2{cos(ωt+θ)i+sin(ωt+θ)j} (3)r(t)・v(t)=(r^2)ω{-sin(ωt+θ)cos(ωt+θ)(i・i)+cos^2(ωt+θ)(i・j)-sin^2(ωt+θ)(j・i)+sin(ωt+θ)cos(ωt+θ)(j・j)} =(r^2)ω{-sin(ωt+θ)cos(ωt+θ)(i・i)+sin(ωt+θ)cos(ωt+θ)(j・j)} =0 よって直交する。 これであってますか?