• ベストアンサー

極限の計算(はさみうち)

a>0のとき、lim[n->+∞]a^(1/n)=1 を証明せよ。 これをハサミウチの原理を使って証明したいのですが、 肝心の不等式が皆目見当がつきません。 ヒントを教えていただけたら幸いです。 お手数ですがよろしく御願い致します。

質問者が選んだベストアンサー

  • ベストアンサー
  • rnakamra
  • ベストアンサー率59% (761/1282)
回答No.2

a>1の場合はa=1+x (x>0)とおくと a^(1/n)=(1+x)^(1/n)<1+x/n となります。 両辺ともの1よりも大きいためそれぞれn乗すると証明できます。(1+x/n)^nを2項定理で展開すればよいわかると思います。 0<a<1の場合はb=1/aとおいてa>1の場合の関係を利用しましょう。 a=1の場合は自明。

bonkissa
質問者

お礼

ご回答ありがとうございます。 参考にさせていただきます。

全文を見る
すると、全ての回答が全文表示されます。

その他の回答 (2)

  • kabaokaba
  • ベストアンサー率51% (724/1416)
回答No.3

ついでに nが自然数とはどこに書いてないので 適当に自然数で評価してあげる必要があるのかも

bonkissa
質問者

お礼

ご回答ありがとうございます。 参考にさせていただきます。

全文を見る
すると、全ての回答が全文表示されます。
  • kabaokaba
  • ベストアンサー率51% (724/1416)
回答No.1

二項定理(1+x)^n

bonkissa
質問者

お礼

ご回答ありがとうございます。 参考にさせていただきます。

全文を見る
すると、全ての回答が全文表示されます。

関連するQ&A

  • 指数関数の極限

    h>0ならば (1+h)^n>1+nh (n=2,3,4,.....)を使って aが1より大きい正の定数のとき  lim_[n→∞]a^(1/n)=1 であることの証明は 任意のh>0に対してベルヌーイの不等式より 1<1+nh<(1+h)^n の各辺のn乗根をとって 1<(1+nh)^(1/n)<1+h ここで1+nh=aとおくと h=(a-1)/n >0 であるから 1<a^(1/n)<1+(a-1)/n aは定数だからlim_[n→∞](a-1)/n=0 はさみうちの原理から lim_[n→∞]a^(1/n)=1 と証明が本に載ってました。 n→+∞であるのに 1+nh=aと置いて 更に、aは定数いえる理由が分かりません。 教えて下さい。宜しくお願いします。

  • 数学3 はさみうちの原理を利用するに

    お世話になっております。 問題によるのですが、極限を求めるにあたって、はさみうちの原理を利用するときの不等式の立て方にペン(頭が)が止まってしまいます。 特に漸化式が絡む問題です 例 a[1]>-2 ,a[n+1]=√(an+2) ですが、この問題は誘導形式で、予め (1)|a[n+1]-2|≦(1/2)|a[n]-2] を証明してから、 lim[n→∞]a[n] を求める形になってます。 無理関数y=√(x-2) とy=x の交点から極限値を求める方法で一応 極限値=2 は得られたのですが、これをはさみうちの原理を利用して解くとなると、ちょっとお手上げです。 a[n]≦b[n]≦c[n] の特にc[n] の式はどのように目星をつければ良いでしょうか? アドバイスいただけると有り難いです。宜しくお願い致します。

  • はさみうちの原理の問題で・・・。

    いつもお世話になっています。 今日はさみうちの原理について学校で勉強したのですが、下記の二つの問題の解き方がさっぱり分かりません・・・。 (いずれもn→∞です) (1)lim a^n/n! (3)a1≧a2≧・・・ak>0としたとき、lim n√(a1^n+a2^n+・・・ak^n) (↑のn√()はn重根です) 漠然とした質問で申し訳ないですが、ご教授頂けたら幸いですm(_ _;)m

  • 極限-はさみうちの原理-

    xy平面上に2つの曲線C1:y=(sinx)/x^2 (x>0),C2:y=(cosx)/x (x>0)があり,曲線C1,C2の交点のx座標を小さい方から順にa_k (k=1,2,…)とする.a_k≦x≦a_(k+1)において,曲線C1と曲線C2とで囲まれる部分の面積をS_k (k=1,2,…)とするとき,次の問に答えよ. (1) kπ<a_k<{k+(1/2)}π (k=1,2,…) が成り立つことを示せ. (2) S_k (k=1,2,…) をa_k,a_(k+1)を用いて表わせ.ただし,三角関数を用いない形で答えよ. (3) lim[n→∞]{Σ[k=n+1,2n]S_k} を求めよ. という問題です. (1)は,a_kは結局x=tanxの交点のx座標に等しいこと,0<x<π/2ではtanx>xであること,tanxの漸近線を考えることで示せました. (2)は,kが偶数のときcos(a_k)>0,kが奇数のときcos(a_k)<0であることとa_k=tan(a_k)であることを利用して S_k=1/√{1+(a_k)^2}+1/√{1+(a_(k+1))^2} 問題は(3)なのですが,明らかに(1)の不等式を利用してのはさみうちの原理だと思うのですが…とりあえず分かったところまで書きます. (1)よりkπ<a_k<{k+(1/2)}πであるから 1/√{1+(π^2)(k+1/2)^2}+1/√{1+(π^2)(k+3/2)^2}<S_k<1/√{1+(π^2)(k+1)^2}+1/√{1+(π^2)k^2} ここで, (最右辺)<(1/π){1/k+1/(k+1)}<∫[k-1,k+1]1/xdx よって,Σ[k=n+1,2n]S_k<(1/π)∫[n,2n](1/x)dx+(1/π)∫[n+1,2n+1](1/x)dx→(2/π)log2 (n→∞) …たぶん求める極限値は(2/π)log2になると思うのですが,左側の不等式による評価が出来ず行き詰っています.どなたかご教授ください.

  • 数学IIIのはさみうちの原理について質問があります。

    高校数学IIIの参考書(ニューアクション・東京出版)において、以下のような問題が出ていました。 lim(n→∞)n/2^nを求めよ。 この問題の解答が「n≧5のとき2^n>n^2が成り立つことを示す」となっていて以下数学的帰納法でこれを証明して、最後にはさみうちの原理を用いています。 またこの類題でlim(n→∞)n^2/2^nを求めよ。 の解答は「n≧3のとき2^n>n^3/6が成り立つことを示す」となっていて以下二項定理を使用しているのですが、解答(上記の「」内です。)で、なぜこのようにnの数値の範囲とnについての不等式が決定されるのかが分かりません。いったいどこからこのようなnの範囲と不等式が出てくるのでしょうか?他の参考書にも理由は掲載されていませんでした。 どなたか理由を教えて下さい。よろしくお願いいたします。

  • 数列の極限の問題

    数列の極限の問題の解説の意味が解りません。 数列a(n)=3^n/n! のとき 0<a(n+1)≦3/4a(n) (n≧3) を示し、 lim(n→∞)3^n/n!=0 を証明せよ という問題なのですが、 解答には a(n)=3^n/n! とおくと a(n+1)=(3/n+1)*a(n) である。 そして、 n≧3 なら 0<3/n+1≦3/4 であり、a(n)>0でもあるから 0<a(n+1)≦(3/4)*a(n) (n≧3) が成立する。 したがって、n≧3のとき、 0<a(n)≦(3/4)^n-3 a(3)=9/2(3/4)^n-3 lim(n→∞)(3/4)^n-3=0 であるから、はさみうちの原理により lim(n→∞)a(n)=lim(n→∞)3^n/n!=0 と書いてあります。 ほとんどの部分は理解できるのですが、 下から3行目の、 0<a(n)≦(3/4)^n-3 a(3)=9/2(3/4)^n-3 の式の中にある、[^n-3]の意味が理解できません。 なぜ^n-3が必要なのか、どこからそれが導き出されたのか、 教えていただけると助かります。 よろしくお願いします。

  • 数列の極限の問題がわかりません!!

    0<a<bである定数a,bがある。Xn=(a^n/b + b^n/a)^1/n とおくとき (1)不等式b^n<a(Xn)^n<2b^n  を証明せよ。 (2)lim<n→∞>Xnを求めよ。 上の問題が全くわかりません! どうか、教えてください(*_*) 計算過程など詳しく書いていただけたらとーっても嬉しいです(>_<) よろしくお願いしますm(__)m

  • 極限の等式の意味についてです。

    極限の例えば lim[n→∞]2n=∞ の等式=は 1+1=2 の等式=と全く同じ意味を表すんでしょうか? ご回答宜しくお願い致します。

  • 上極限、下極限について

    「{a_n}が有界の時、{a_n}が収束する⇔liminfa_n=limsupa_n、が成り立ち、この時、{a_n}の極限はliminfa_n、limsupa_nに一致する。」―(*)の証明はできたのですが(たぶん)、 「lima_n=∞⇔liminfa_n=limsupa_n=∞、lima_n=-∞⇔liminfa_n=limsupa_n=-∞」の証明ができません。 ちなみに(*)の証明が以下です。 (証明) ・liminfa_n=limsupa_nと仮定する。  ∀ε>0をとると、a-ε<a_n<a+ε  よって、{a_n}はaに収束する。 ・{a_n}がaに収束すると仮定すると、  m_0(ε)∈(自然数)が定まって、n>m_0(ε)の時、a-ε<a_n<a+εとなる。  α_m=infa_{m+n},β=supa_{m+n}とおくと、  m>m_0(ε)の時、a-ε≦α_m≦β_m≦a+ε  よって、n_0(ε)=m_0(ε/2)とおくと、  n>n_0(ε)の時、|α_m-a|<ε、|β_m-a|<ε  ゆえに、limα_m=limβ_m=a  すなわち、liminfa_n=limsupa_n=lima_n …が証明なのですが、後半部分はどのように示せばよいかわからないので、回答よろしくお願いします。

  • 数列の極限についての問題で・・・

    いつもお世話になっています。今 “ 数列{a_n}に対して lim_(n→∞) a_{2n} = lim_(n→∞) a_{2n-1} = α なら lim_(n→∞) a_{n} = α を示せ ” という問題に取り組んでいるんですが、当たり前のような気がするだけで、どうやって示せばよいのか分かりません。 苦し紛れに lim_(n→∞) (a_{2n} - a_{2n-1}) = 0 と変形して、極限の定義通り ∀ε>0, ∃N; |a_{2n} - a_{2n-1}| < ε (n≧N) と書き換えてみました。最後の式には「おっ」と思ったんですが、それ以上はどうしようもありませんでした。 宜しければ、解法へのヒントなど頂けませんでしょうか。 お願いします<m(_ _)m>