• ベストアンサー

はさみうちの原理の問題で・・・。

いつもお世話になっています。 今日はさみうちの原理について学校で勉強したのですが、下記の二つの問題の解き方がさっぱり分かりません・・・。 (いずれもn→∞です) (1)lim a^n/n! (3)a1≧a2≧・・・ak>0としたとき、lim n√(a1^n+a2^n+・・・ak^n) (↑のn√()はn重根です) 漠然とした質問で申し訳ないですが、ご教授頂けたら幸いですm(_ _;)m

質問者が選んだベストアンサー

  • ベストアンサー
  • Ae610
  • ベストアンサー率25% (385/1500)
回答No.4

とりあえず (1)lim[n→∞] a^n/n!・・・のみ |a|<m<nとなるmをとることができる。・・・(1) |a|^n/n!=|a|・|a|/2・|a|/3・・|a|/(m-1)・|a|/m・|a|/(m+1)・・|a|/n (・はかけ算の意味) (1)より|a|/m>|a|/(m+1)>・・・>|a|/nであるから |a|^n/n!<|a|^(m-1)/(m-1)!・(|a|/m)^(n-m+1)・・・(2) よって(2)により lim[n→∞] a^n/n!≦|a|^(m-1)/(m-1) !・lim[n→∞] (|a|/m)^(n-m+1)=|a|^(m-1)/(m-1) !・0 =0 (∵|a|/m<1)

その他の回答 (3)

  • R_Earl
  • ベストアンサー率55% (473/849)
回答No.3

ANo.2です。 (3)の0 < n√(a1^n+a2^n+・・・ak^n) ≦ n√(a1^n+a1^n+・・・a1^n)は間違いです。 一番左は0ではありません。 はさみうちの不等号の式の右側がn√(a1^n+a2^n+・・・ak^n)の最大値だったので、 左側にはn√(a1^n+a2^n+・・・ak^n)の最小値(?)を使ってみてください。

  • R_Earl
  • ベストアンサー率55% (473/849)
回答No.2

> (1)lim a^n/n! 0 < aの場合、まず0 ≦ (a^n) / (n!) 2a = Nと置くと、N < nの時、 (a^n) / (n!) = { (a^N) / (N!) }{ a / (N + 1)}{ a / (N + 2)}…{ a / (N + n - N)} ≦ { (a^N) / (N!) }{ a / N }{ a / N }…{ a / N } = { (a^N) / (N!) }{ a / N }^(n - N) よって0 ≦ (a^n) / (n!) ≦ { (a^N) / (N!) }{ a / N }^(n - N) > (3)a1≧a2≧・・・ak>0としたとき、lim n√(a1^n+a2^n+・・・ak^n) まず、0 < lim n√(a1^n+a2^n+・・・ak^n) n√(a1^n+a2^n+・・・ak^n)が最大になるのはa1 = a2 = … = akの時。 よって、 0 < n√(a1^n+a2^n+・・・ak^n) ≦ n√(a1^n+a1^n+・・・a1^n)

  • koko_u_
  • ベストアンサー率18% (459/2509)
回答No.1

>漠然とした質問で申し訳ないですが、ご教授頂けたら幸いです はさみうちの原理で解けばいいんだよ。

関連するQ&A

  • 数学3 はさみうちの原理を利用するに

    お世話になっております。 問題によるのですが、極限を求めるにあたって、はさみうちの原理を利用するときの不等式の立て方にペン(頭が)が止まってしまいます。 特に漸化式が絡む問題です 例 a[1]>-2 ,a[n+1]=√(an+2) ですが、この問題は誘導形式で、予め (1)|a[n+1]-2|≦(1/2)|a[n]-2] を証明してから、 lim[n→∞]a[n] を求める形になってます。 無理関数y=√(x-2) とy=x の交点から極限値を求める方法で一応 極限値=2 は得られたのですが、これをはさみうちの原理を利用して解くとなると、ちょっとお手上げです。 a[n]≦b[n]≦c[n] の特にc[n] の式はどのように目星をつければ良いでしょうか? アドバイスいただけると有り難いです。宜しくお願い致します。

  • はさみうちの原理(証明)

    数列An<Xn<BnまたはAn≦Xn≦Bnでlim(n→∞)An=lim(n→∞)Bn=lが存在すれば、lim(n→∞)Xnも存在してlに等しいことを証明せよ。という「はさみうちの原理」を証明する問題ですが、どうすれば証明できるでしょうか?よろしくお願いします。

  • 数学IIIのはさみうちの原理について質問があります。

    高校数学IIIの参考書(ニューアクション・東京出版)において、以下のような問題が出ていました。 lim(n→∞)n/2^nを求めよ。 この問題の解答が「n≧5のとき2^n>n^2が成り立つことを示す」となっていて以下数学的帰納法でこれを証明して、最後にはさみうちの原理を用いています。 またこの類題でlim(n→∞)n^2/2^nを求めよ。 の解答は「n≧3のとき2^n>n^3/6が成り立つことを示す」となっていて以下二項定理を使用しているのですが、解答(上記の「」内です。)で、なぜこのようにnの数値の範囲とnについての不等式が決定されるのかが分かりません。いったいどこからこのようなnの範囲と不等式が出てくるのでしょうか?他の参考書にも理由は掲載されていませんでした。 どなたか理由を教えて下さい。よろしくお願いいたします。

  • 「はさみうち」を使う問題

    数列{x_n}は、不等式 4x_n+1-3x_n<2 ・・・1 2x_n+1-x_n>2  ・・・2 を満たす。 (1)x_n+1-2<(3/4)^n(x_1-2)を示せ (2)lim(n→∞)x_nを求めよ ほかの「はさみうち」をつかう問題と似ているのですが不等式のタイプは解いたことがなく、(1)を数学的帰納法で示そうとしたのですが、うまく1の式を使えませんでした。 n=1のときは1の式を変形するだけでできたのですが n=kのときの仮定からn=k+1が成り立つことがうまく示せません。 それとも1,2の式から帰納法を用いずに変形して導くことも可能なのでしょうか? 回答いただければありがたいです。よろしくお願いいたします

  • はさみうちの定理を使う極限の問題です。

     lim(n→∞) n*sin(π/n) の極限値を求める問題で、はさみうちの定理を使って解くことを考えたのですが   ≦ n*sin(π/n) ≦ n*π/n となり、右辺の数式は見つけられたのですが、左辺に最適な数式が見つけられずにいきずまっています。答えは、πになるそうなのですが、その過程が分からなくなったので、質問させていただきました。宜しければ、ご回答お願いいたします。

  • 極限の計算(はさみうち)

    a>0のとき、lim[n->+∞]a^(1/n)=1 を証明せよ。 これをハサミウチの原理を使って証明したいのですが、 肝心の不等式が皆目見当がつきません。 ヒントを教えていただけたら幸いです。 お手数ですがよろしく御願い致します。

  • 極限-はさみうちの原理-

    xy平面上に2つの曲線C1:y=(sinx)/x^2 (x>0),C2:y=(cosx)/x (x>0)があり,曲線C1,C2の交点のx座標を小さい方から順にa_k (k=1,2,…)とする.a_k≦x≦a_(k+1)において,曲線C1と曲線C2とで囲まれる部分の面積をS_k (k=1,2,…)とするとき,次の問に答えよ. (1) kπ<a_k<{k+(1/2)}π (k=1,2,…) が成り立つことを示せ. (2) S_k (k=1,2,…) をa_k,a_(k+1)を用いて表わせ.ただし,三角関数を用いない形で答えよ. (3) lim[n→∞]{Σ[k=n+1,2n]S_k} を求めよ. という問題です. (1)は,a_kは結局x=tanxの交点のx座標に等しいこと,0<x<π/2ではtanx>xであること,tanxの漸近線を考えることで示せました. (2)は,kが偶数のときcos(a_k)>0,kが奇数のときcos(a_k)<0であることとa_k=tan(a_k)であることを利用して S_k=1/√{1+(a_k)^2}+1/√{1+(a_(k+1))^2} 問題は(3)なのですが,明らかに(1)の不等式を利用してのはさみうちの原理だと思うのですが…とりあえず分かったところまで書きます. (1)よりkπ<a_k<{k+(1/2)}πであるから 1/√{1+(π^2)(k+1/2)^2}+1/√{1+(π^2)(k+3/2)^2}<S_k<1/√{1+(π^2)(k+1)^2}+1/√{1+(π^2)k^2} ここで, (最右辺)<(1/π){1/k+1/(k+1)}<∫[k-1,k+1]1/xdx よって,Σ[k=n+1,2n]S_k<(1/π)∫[n,2n](1/x)dx+(1/π)∫[n+1,2n+1](1/x)dx→(2/π)log2 (n→∞) …たぶん求める極限値は(2/π)log2になると思うのですが,左側の不等式による評価が出来ず行き詰っています.どなたかご教授ください.

  • 極限の問題

    以前も質問させていただきましたが、わからないので教えてください。 lim(n→∞)*{a^n+b^n}^(1/n),a>0,b>0の極限を求めよ。この式にはn乗根が入っています。醜くて申し訳ありません。 まずa,bの大小で2通りに場合わけして、はさみうちを利用しそれぞれ「a.bという答え」になりました。 答えはmax{a,b}のようですが、a=bの場合を考えて、単純にlim(n→∞)*{a^n+b^n}^(1/n)をa=bにすると答えは2a=2bになると思いますが、これは模範解答の答えに含まれていません。 lim(n→∞)*{a^n+b^n}^(1/n)=lim(n→∞)*{a^n+a^n}^(1/n) =lim(n→∞)*{2*a^n}^(1/n)=2a nが消える。 何ででしょうか。挟み撃ちのときは小なりイコールのような感じでイコールのときも一括してやっているので裏目に出ませんでした。 以上をよろしくお願いします。

  • 【急いでいます】 不等式の証明(はさみうちの原理?)

    a = | μ2 - μ1 |/(2σ) とする。 次の不等式を用いて、| μ2 - μ1 |/σ が無限大になると Pe がゼロになることを示せ。 Pe = 1/√(2π) * ∫ [a~∞] ( exp((-t^2)/2) ) dt ≦ 1/(√(2π)*a) * exp(-a^2/2) 注: [a~∞] は積分範囲です。 ---------- 数式がゴチャゴチャしていて申し訳ないです。 結局これは、左辺は exp の積分ですので、常にゼロ以上と考えて 0 ≦ 左辺 ≦ 右辺 と考えて 右辺は lim(a→∞) において0になるのではさみうちの原理?より左辺もゼロ というやり方であっているのでしょうか? なんとなく数学の解答としてイマイチな気がするので 厳密な解き方などがあれば教えていただきたいです。 よろしくおねがいします。

  • 数列の極限の問題

    数列の極限の問題の解説の意味が解りません。 数列a(n)=3^n/n! のとき 0<a(n+1)≦3/4a(n) (n≧3) を示し、 lim(n→∞)3^n/n!=0 を証明せよ という問題なのですが、 解答には a(n)=3^n/n! とおくと a(n+1)=(3/n+1)*a(n) である。 そして、 n≧3 なら 0<3/n+1≦3/4 であり、a(n)>0でもあるから 0<a(n+1)≦(3/4)*a(n) (n≧3) が成立する。 したがって、n≧3のとき、 0<a(n)≦(3/4)^n-3 a(3)=9/2(3/4)^n-3 lim(n→∞)(3/4)^n-3=0 であるから、はさみうちの原理により lim(n→∞)a(n)=lim(n→∞)3^n/n!=0 と書いてあります。 ほとんどの部分は理解できるのですが、 下から3行目の、 0<a(n)≦(3/4)^n-3 a(3)=9/2(3/4)^n-3 の式の中にある、[^n-3]の意味が理解できません。 なぜ^n-3が必要なのか、どこからそれが導き出されたのか、 教えていただけると助かります。 よろしくお願いします。