• ベストアンサー

有限体 ガロア体 多項式

大学の期末試験の過去問なのですがわからないので,ヒント,方針を与えてもらえればうれしいです。 ある大問の中の一つの問題です。前提条件は 「Z3上の多項式p(x)=x^3+2x+1を考える。αをp(x)=0の解とし,元の個数が27個の有限体GF(27)をZ3上の3次の拡大体Z3(α)として実現する。 このとき,α^2+1を一つの解とするZ3上の3次方程式を求めよ。」 です。Z3はZ/Z(3)のことです。「元の個数が27個の有限体GF(27)をZ3上の3次の拡大体Z3(α)として実現する。」はこの問題で,使わないかもしれませんが, よろしくお願いします。

質問者が選んだベストアンサー

  • ベストアンサー
  • Tacosan
  • ベストアンサー率23% (3656/15482)
回答No.1

えぇと, 「α^2+1を一つの解とするZ3上の3次方程式を求めよ」を素直に実行してください. つまり, z = α^2+1 に対して z^3 + az^2 + bz + c = 0 となるように係数 a, b, c を求めてください.

関連するQ&A

  • ガロア体GF(2)の2次拡大の2次拡大について

    GF((2^2)^2)の元の求め方を教えてください。 GF(2)の元は{0,1}で、既約多項式をx^2+x+1とすれば{0,1,x,x+1}の拡大体GF(2^2)が得られることはわかりました。 そこで、拡大体GF(2^2)をさらに2次拡大させたGF((2^2)^2)を求めたいのですが、既約多項式をX^2+X+b(10)=0としたとき、16個の元はどのように求められるのでしょうか。 また、GF((2^2)^2)の元も原始元のべき乗で表現できるのでしょうか。 数学専攻ではないので、できるだけ詳しく解説していただけたら幸いです。 質問の仕方が下手で申し訳ありませんが、よろしくお願いします。

  • 有限体の元の個数の証明。

    有限体の元の個数の証明。 すみませんがどなたかこの問題を教えてもらえませんでしょうか? pを奇数の整数、rを正の整数とする。Fp^rの元の平方になっているFp^rの元の個数、すなわち |{αはFp^rに含まれる|α=β^2、あるβはFp^rに含まれる}| は1/2(p^r-1)であることを示せ。 (Fp^rはFp[x]の多項式をr次既約多項式f(x)で割った余り多項式全体の集合) 申し訳ありませんが。どうかお願いします。

  • 有限体の証明

    すみませんこの問題をどなたか教えてもらえませんでしょうか? Fp(p=3^2) (これは有限体Fp(p=3)を2次既約多項式で割った余り多項式全体の集合) の0でないすべての元の積は2であることを示せ。

  • ガロア拡大体とその部分体について

    ガロア群の構造を考えているのですが煮詰まっています。 Qを有理数として、体の拡大Q(√2,exp(2πi/5))/Qについて考えています。(以後√2=x,exp(2πi/5)=z,L=Q(x,z)と書きます。) この時、xの最小多項式がx^2-1,zの最小多項式がz^4+z^3+z^2+z+1となるから、LはQのガロア拡大となり拡大次数は2*4=8。よって、ガロア群の位数も8。ここでガロア群の生成元を考えたいのですが、一つは、τ(x)=-x,τ(z)=zとなるようなτであると思うのですが、もう一つをどのように考えればよいのかわかりません。 (1)z→z^2,z^2→z^3,z^3→z^4,z^4→z^5,z^5→z のように一個ずつずれるような写像 (2)z→z^2となるような写像 (3)その他 何が正解でなぜなのかを教えていただけないでしょうか。5乗根だけでなく、他の円分体のときのガロア群の生成元についての考え方についても教えていただけると幸いです。

  • ガロア体についての質問です

    f(x)=x^3+x+1を原始多項式として、その根のαを用いてGF(8)の加算表、乗算表を求める問題です。 原始多項式より、 α^3=α+1 α^4=α^2+α α^5=α^2+α+1 α^6=α^2+1 α^7=1 と求めました。 此処で質問ですが、加算表や乗算表を作る際、α^4、α^5、α^6が出てきますが、 GF(8)={0,1,α,α^2,α^3} なので、α^4、α^5、α^6は使えません。 この場合、α^4、α^5、α^6はどのように表に記せば良いのですか?

  • 体F上のn次方程式の因数分解

    体F上のn次方程式の因数分解 有限体に関する次の問題を解きました。 [問] p(x)=x^3+x+1 を Z3 上の多項式として因数分解せよ。 この問題を筆算で以下のように解きました。 p(1)=0よりp(x)は因数(x-1)を持つ。 x^3を消すために、(x-1)にx^2をかけたものを引くと、x^2が残る。 xを下ろしてきて、x^2+xを消すために、(x-1)にxをかけたものを引くと、2xが残る。 1を下ろしてきて、2x+1を消すために、(x-1)に2をかけたものを引くと、3が残る。 Z3上の多項式より、3≡0(mod 3)であるから、割り切れた。 したがって、 p(x) = (x-1)(x^2+x+2) しかし、手元にある解答を見ると、 p(x)=x^3+x+1 = x^3-2x+4 = (x^2-2x+2)(x+2) と書いていました。全ての係数について(mod 3)で考えると私の解答と一致していますが、これはどちらも正しいことになるのでしょうか? また、ここでもう一つの質問ですが、Z3上の多項式というのは、「全ての係数において(mod 3)で考えたとき、等しいものを同じ多項式として扱う」という解釈で正しいのでしょうか? 例えばこの考え方ではZ3上で x^2+2 = 4x^2+2 = x^2+5 = -2x^2-1 となりますがこれは正しいですか。 質問は以下となります。 (1)私の解答と手元にある解答のどちらが(両方が)正しいのか。 (2)私の体F上の多項式の解釈は正しいのか。 よろしくお願いします。

  • 有限体上で代数多様体の無限遠点の解の求め方

    久賀道郎氏の数セミの記事を読んでいるのですが、有限体上で代数多様体の無限遠点での解の求め方を教えていただけませんでしょうか。例えば、 (1)x有限体F_7上で x^4-20x^3+56x^2-44x-y^2=0 の無限遠点の解は2個と書いていますが、どう求めるのでしょうか?射影的にして、x^4-20x^3z+56x^2z^2-44xz^3-y^2z^2=0で、z=0が無限遠点になると思うのですが、(x=0,y=1),(x=0,y=2), など6個解があるように思うのですが? (2)有限体F_7上で x^3+y^3=2 の無限遠点の数は1個と書いていますが、2個のように思うにですが。 (3)有限体F_7上で y^2+y=x^3+x^2 点の数は1個と書いていますが,もっと有りそうに思うのですが。

  • GF(2)の体の元を係数とする原始多項式

    GF(2)の体の元を係数とする32次の原始多項式を教えてください 16次以下ならば私の持っている本の付録に付いていたのですが 32次は載っていません 例えば8次ならばx^8+x^4+x^3+x^2+1というふうに よろしくお願いします

  • ガロア体 について質問します

    ガロア体の基礎を学んでいるのですが、計算方法の辺りで分からず悩んでいます。 わかる方がおられましたら教えてください! 下のような例について考えます。 ------------------------------------------- GF(4)=GF(2^2)={0,1,α,α^2} の拡大体です。 f(x)=x^2+x+1 についてαを根として考えます。 すると、 f(α)=α^2+α+1=0より α^2=-(α+1)    =-α-1     …(1)    =α+1 α^3=α^2*α    =(α+1)α    =α^2+α    =α+1+α    =α(1+1)+1    =1 ------------------------------------------- のようになります。 ここで質問なのですが、 【質問1】 上記(1)の部分で「-α-1=α+1」となりますが、なぜ「-α=α」なのでしょうか。 【質問2】 上記のようなガロア体においては「1+1=0」となります。なぜでしょうか。理由について教えてください。 ※GF(3)={0,1,2}では「1+1=2」です! 私が疑問に思っていることは以上です。 ガロア体初心者ですので、是非やさしくおしえてくださいm(_ _)m

  • 最小多項式

    GF(2^4)の原始元αの最小多項式m1(x)=x^4+x+1とする。 m1(α)=0から、GF(2^4)の元をαのべき表現で表示できました。 ここで、すべての元において最小多項式を求めたいのですが。 講義ノートによると「最小多項式とは、その元を根とする次数最小の多項式」と書いてありました。 そうならば、α^3の最小多項式は(x-α^3)のはず、しかし、 ここで、α^6とα^12を導入し、α^3の最小多項式が m3(x)=(x-α^3)(x-α^6)(x-α^12) となるらしいです。また、一般的にAをf(x)=0の根とすると、A^{2*i}もまた、f(x)=0の根であることは知っているのですが、 なぜ最高次数を3にする必要があったのでしょうか? 最高次数が3以外じゃだめなんですか。例えば(x-α^3)(x-α^6)のように。 また、数の候補としてはα^3、α^6、α^12だけでなく、α^18、α^24、、、、、、、 膨大に候補があがると思います。α^3の最小多項式を考えていますが、 ほぼ無限に候補があがるため、これで、すべての元をあらわしてしまいそうなんですが… こうなると、もはやα^3のペアとして、α^6とα^12のみならず、 どんな元でもよいと言うことにならないのでしょうか? もし、ならないのであれば任意の元をかんがえて最小多項式を作ろうとしても、 このような事態は起きないのか? わからないので是非教えてください。お願いします。