• 締切済み

記号論理学

論理式∀x∃y((x<y)⊃(x+1>y+1))の真か偽かをを求めよという問題で 求め方がまったくわかりません。 ((x<y)⊃(x+1>y+1))の部分が成り立たないと思うのですがそれで偽ということになるのでしょうか? もしご存知の方が居れば教えていただければ幸いです。 宜しくお願いいたします。

みんなの回答

  • zk43
  • ベストアンサー率53% (253/470)
回答No.1

x+1>y+1はx>yと同値であり、これとx<yが同時に成り立つことはないの で偽と思われます。 任意のxに対して、どんなyをとっても、x>yがx<yに含まれることはな い、つまり、x>yならばx<yとなることはない。 記号論理学というのは良く知りませんが、実数の順序に関して、任意の 2つの実数x、yについて、x>y、x=y、x<yのどれか一つのみが成立する という全順序という性質があります。

megu_013
質問者

補足

全称記号と存在記号は考えずに偽として良いのでしょうか? この式の場合の全称と存在記号の使い方が良くわからないのですが どなたか解説よろしくお願いします。

関連するQ&A

  • 記号論理の問題がわかりません

    論理式∀x∃y((x⊂y)⊃(x+1⊃y+1))の真か偽かをを求めよという問題で求め方がまったくわかりません。 ∀x∃yの部分の意味はすべてのxに対してあるyが少なくとも1つ存在している。でいいのでしょうか? それに((x⊂y)⊃(x+1⊃y+1))でまったくわかりません。 もしご存知の方が居れば教えていただければ幸いです。 宜しくお願いいたします。

  • 記号論理学の問題について

    記号論理学の問題について教えていただきたく質問しました。 カデゴリ違いだったらすいません。 (1)∃x(x+1<x) 式が真か偽か答えよ。また限量子を変えて等値な論理式へ変形せよ。 この式は真であってますか? 限量子は∃xの部分だと思うのですが、どう変えれば等値な倫理式になるでしょうか? (2)∃x∀yP(x,y) 式を日本語で読め。限量子を変えて等値な論理式へ変形せよ。 この問題については日本語も等値な倫理式へ変形するやり形もよくわかりません。 どなたか回答よろしくお願いいたします。

  • 記号論理学の問題について

    以下の問題の回答が正解かどうか教えてください(__ 答えをなくしてしまいお願いいます。 (1)∃x(x+1<x) 式が真か偽か答えよ。また限量子を変えて等値な論理式へ変形せよ。 (2)∃x∀yP(x,y) 式を日本語で読め。限量子を変えて等値な論理式へ変形せよ。 (1)は偽で、等値な論理式は¬∀x(¬(x+1<x)) (2)は日本語で、すべてのyがPであるようなxが存在する。 等値な論理式は¬(∀x∃y(¬p(x,y))) 自分はこんな感じで解きました。 どうでしょうか? お願いします。

  • 論理式について

    変数の範囲を自然数とし,p(x,y)を「xはyの約数」とする.このとき,次の論理式のそれぞれについて,その意味と真偽の組み合わせで最も適切なものを選択肢から選びなさい. ∀x∃y p(x,y) ∀y∃x p(x,y) ∃x∀y p(x,y) ∃y∀x p(x,y) 【選択肢】 (1)任意の自然数を割り切る数がある.           真 (2)任意の自然数を割り切る数がある.           偽 (3)すべての自然数には少なくとも1つの倍数がある.  真 (4)すべての自然数には少なくとも1つの倍数がある.  偽 (5)任意の自然数には約数が存在する.          真 (6)任意の自然数には約数が存在する.          偽 (7)すべての自然数で割り切られる数がある.       真 (8)すべての自然数で割り切られる数がある.       偽 自分でやってみて、上から順に(8)(3)(5)(1)となったのですが、どうでしょうか?

  • 論理記号の表現について

    (1)論理記号による文を日本語に訳すとき、両者を結びつける記号に決まりはないのでしょうか? ある参考書では   ∀x∃y(x≦y):全ての x に対して、x ≦ y を満たす y が存在する のようにコロンで仕切っています。: について特に説明はないので単なる仕切りでしょう(笑)。しかし、論理記号で表そうが日本語で表そうが同値の命題であることには変わりないので ⇔ を使って   ∀x∃y(x≦y) ⇔ 全ての x に対して、x ≦ y を満たす y が存在する としてもよさそうなのですが、他の参考書やネット上の記述を見ても、上記のように表現している例は見当たりません。何か理由があるのでしょうか。 (2)  T を真を表す記号としたとき「命題 A は真である」ことを A ⇔ T のように表していいのでしょうか?  たとえば変数 x の動く領域を実数の集合[R]としたとき、   x∈[R],∀x(x^2 - 4x + 5 > 0) ⇔ T. のように表していいのでしょうか。

  • 論理式を作る!

    次の条件を満たす最短の論理式を作りたいんですが、 うまく作れません>< 1)p,q,rで2つ以上が真なら真、2つ以上が偽なら偽の論理関数 カルノー図より、pq+pr+qrという論理式を導き、 これをp(q+r)+qrとしました。これ以上は無理でしょうか? 必要ならば、→、≡、排他的論理和も使えます。 また 2)p,q,r,sのうち、いずれか3つが真で、そうでなければ偽となる論理関数 の論理式を導きたいんですが、これはカルノー図も使えません>< ご教授ください。

  • 論理学の問題

    議論領域は正の整数の集合として P(x,y)は「xはyで割り切れる」とします。 そして以下の論理式に対して 真偽を論じたいと思います。 (場合分けして考えてもよいです) ∀x∃x(P(x,y)∧¬(x=y))…(1) の数学の用語で表した場合と真偽を考えます。 (1)の論理式は「ある数xはあらゆる数yで割り切れる。ただしxとyは同値でない」と解釈して 数学の用語で表すと x=py(p∈Z+(正の整数))でx≠yつまりp≠1となる p∈Z+(p≠1)よりx>yでなけらばならない よってあらゆる数yで割り切れることができない よってこの論理式は偽となる これでよいでしょうか? 数学が苦手なので教えてください。 また、 ∀x∀y∃z(P(z,x)∧P(z,y)) はどのようにとけばよいでしょうか?

  • 論理学の問題なのですが

    この問題のときかたを教えてください。 論理式が真か偽か、偶然的かを判定して真式にはA,偽式にはB、偶然式にはCを。 (1) ~pVq⊃q (2) ~(pVq)≡(p&q) (3) (p⊃q)V(~q⊃~p) (4) ~(p&q⊃(~p⊃q)) (5) (~pVq)&(q⊃r)⊃(p⊃r)

  • 記号論理学の全称記号(∀)と存在記号(∃)について

    現在、独学で論理学の勉強をしているのですが、 どうしても理解できない部分があります。 どなたか詳しい方がしましたらアドバイスをお願い致します。 ・スマリヤン著:「記号論理学 - 一般化と記号化」 この本の中の練習問題に以下のようなものがあります。 「xはyを知っている」をxKyとあらわす時、次の命題を記号化せよ。 1.すべての人は、彼を知らないある人を知っている。 2.ある人は、彼を知っているすべての人を知っている。 解答1:∀x∃y (xKy ∧ ¬yKx) 解答2:∃x∀y (yKx → xKy) どちらの問題もyに関して特定の条件がありますが、 なぜ、設問1の時だけ「∧」になり、設問2では、「→」になるのでしょうか? もし、設問2で「∃x∀y (yKx ∧ xKy)」と解答したら、 これはどういう解釈になるのでしょうか? それから、基本的な考え方として、 「∀x∃y」は、すべてのxについて対応するyが存在している。 ただし、yはそれぞれのxに対して別々である。 「∃x∀y」は、あるxについてすべてのyが対応している。 で正しいのでしょうか?

  • 論理学に関する質問

    この二つの定義のどちらも正しいとすると矛盾が生じるのは何故ですか? (恐らく自分が何か間違えていると思うのですが、何が悪いのか分かりません) 1 .排中律の言葉による定義 : 命題は成立するか成立しないかのどちらか以外は起こらない。 2 . 排中律の論理式による定義 : 「P ∨ (¬P) は真」の事である ソース : http://www.ozawa.phys.waseda.ac.jp/pdf/ronritoshugo.pdf 説明 ∨の定義 : 与えられた複数の命題のいずれか少なくとも一つが真であることを示す論理演算(https://ja.wikipedia.org/wiki/%E8%AB%96%E7%90%86%E5%92%8C) ∨の定義によって、P ∨ (¬P) は真を満たすためには、Pか¬Pが真であればよい よって、Pが真であって、¬Pは偽ではなくうんこだと仮定しても、P ∨ (¬P)は成り立つため、2の排中律の論理式による定義に違反はしていない しかし、1の排中律の定義には違反している よって二つの定義が正しいとすると矛盾している 先にこれから言われそうなことに対して質問しておきます 1 . 命題には、真か偽しかない そのため、偽でもないうんこというものがあるのはおかしい 1の質問 : 命題には真か偽しかないのであれば、排中律がある意味は何ですか? 2 . Pが真であるとき、¬Pは偽であるから、うんこではない 2の質問”Pが真であるとき、¬Pは偽である”が正しいといえるのは、何故ですか?