zk43のプロフィール

@zk43 zk43
ありがとう数419
質問数8
回答数709
ベストアンサー数
253
ベストアンサー率
53%
お礼率
72%

  • 登録日2007/01/14
  • 固定点(不動点)定理 中間値の定理を用いた証明方法

    固定点(不動点)定理 中間値の定理を用いた証明方法 今大学で固定点(不動点)定理の証明の課題がでています。 中間値の定理を用いた証明です。 イメージはわかったのですが文章で書くとなるとうまく書くことができません。 アドバイス、回答なんでもいいのでよろしくお願いいたします。

  • 最大公約数に関する問題です。

    最大公約数に関する問題です。 『2つの整数6186と4709の最大公約数(6189,4709)を求めよ。また、この最大公約数に対して、(6189,4709) = 6186X + 4709YとなるX,Yを見つけよ。』という問題です。最大公約数は1と求められたのですが、後半の『(6189,4709) = 6186X + 4709YとなるX,Yを見つけよ。』は、X,Y の組み合わせが無数にあると思うのですが、どうしたら良いのでしょうか?宜しくお願い致します。

  • ガロア理論

    ガロア理論に興味を持っていて、勉強してみようかなという気になっています。大学生の頭で理解できるものでしょうか?また、それなら先に何々を勉強した方が良い、というのはありますでしょうか?

  • 素数の分類と無限性に関して。

    素数の分類と無限性に関して。 ※^は乗数の意味です。 8n+1型の素数が無限に存在することの証明 原始根の存在(素数 p を法とする整数環 Z/pZ の乗法群が位数 p - 1 の巡回群であること)を使う。 x を整数とする時x^4 + 1 の奇素数因子を p とする。 x^4 ≡ - 1 (mod. p) より、両辺を2乗することでx^8≡1となる。 x の p を法とする整数環 Z/pZ の乗法群での位数は 8 で有るから、 p ≡ 1 (mod. 8) となる。ここで、 p ≡ 1 (mod. 8) となる素数が有限個であったとする時、その総乗積を P として、 (2P)^4 + 1 の奇素数因子を考えると矛盾が出る。 私は2PをX"とおいて上と同様に考えました。 この証明の流れや、8n+1型の素数が無限に存在することは理解できるのですが、上の証明における「位数は 8 で有るから、 p ≡ 1 (mod. 8) となる」の部分がどのようにして言えるのかが分かりません。フェルマーの小定理を用いているのでしょうか? よろしくお願いします。

  • 素数の逆数和についの証明

    素数の逆数和が無限大に発散することを、自然数の逆数和が無限に発散することの考えを用いて示したいです。 以下の証明で2点ほど分からない部分があります。^は乗数の意味です。 文中の(1)右辺を展開すると自然数の逆数和になるというのがどこから判断できるのかという点と、(2)オイラーが使用した公式は 0 < x ≦ 1/2 のとき 1/( 1 - x ) ≦ 10^x はどのような公式なのか。がよく分かりません。 証明は下記になります。 無限等比級数の公式より、 -1<x<1のとき初項1、項比 x の無限等比級数は Σ x^n = 1/(1 - x) となりました。 ここで x に素数の逆数を入れていくと 1/(1-1/2) = 1/2^0 + 1/2^1 + 1/2^2 + 1/2^3 + 1/2^4 + … 1/(1-1/3) = 1/3^0 + 1/3^1 + 1/3^2 + 1/3^3 + 1/3^4 + … 1/(1-1/5) = 1/5^0 + 1/5^1 + 1/5^2 + 1/5^3 + 1/5^4 + … 1/(1-1/7) = 1/7^0 + 1/7^1 + 1/7^2 + 1/7^3 + 1/7^4 + … のようになります。これらを辺々かけあわせると、 1/(1-1/2) × 1/(1-1/3) × 1/(1-1/5) × 1/(1-1/7) × … = (1/2^0 + 1/2^1 + 1/2^2 + 1/2^3 + 1/2^4 + …) × (1/3^0 + 1/3^1 + 1/3^2 + 1/3^3 + 1/3^4 + …) × (1/5^0 + 1/5^1 + 1/5^2 + 1/5^3 + 1/5^4 + …) × (1/7^0 + 1/7^1 + 1/7^2 + 1/7^3 + 1/7^4 + …) × … となります。ここで右辺を展開すると、 1 + 1/2 + 1/3 + 1/4 + 1/5 + 1/6 + 1/7 + 1/8 + 1/9 + … となり、これは自然数の逆数の和です。 これは無限大になりましたね。つまり U = 1/(1-1/2) × 1/(1-1/3) × 1/(1-1/5) × 1/(1-1/7) × … = ∞ なんですね。ここでオイラーが使用した公式は 0 < x ≦ 1/2 のとき 1/( 1 - x ) ≦ 10^x です。これを利用すると、 U = 1/(1-1/2) × 1/(1-1/3) × 1/(1-1/5) × 1/(1-1/7) × … ≦ 101/2+1/3+1/5+1/7+… Uは無限大なのでそれより大きい 101/2+1/3+1/5+1/7+… も無限大となり、 1/2 + 1/3 + 1/5 + 1/7 + … つまり素数の逆数の和も無限大になるわけです。 以上が素数の逆数和が無限に発散することの証明です。 もしよろしければ、よろしくお願いします。