• 締切済み

証明問題1

[問] f(x)は[a,b]で連続、(a,b)で微分可能でf(x)≠0とする。 もし、f(a)=f(b)=0ならば、任意の数kに対して、   f'(ε) / f(ε) =k  (a<ε<b) となるεが存在することを証明せよ。 問題文より、ロルの定理を利用するような気がするんですが…、 それが合ってるのかも、また、解き方もわかりません。 毎回すみませんが、ぜひよろしくお願いします。

みんなの回答

  • zk43
  • ベストアンサー率53% (253/470)
回答No.1

f'(x)/f(x)=kとすると、 f'(x)-kf(x)=0 e^(-kx)f'(x)-ke^(-kx)f(x)=0 {e^(-kx)f(x)}'=0 となる。(線形微分方程式を解く時のような感じ) これより、g(x)=e^(-kx)f(x)に対してロルの定理を適用できるか試してみる。 g(a)=e^(-ka)f(a)=0 g(b)=e^(-kb)f(b)=0 g(x)は[a,b]で連続で、(a,b)で微分可能なので、ロルの定理が適用 できて、 g'(ε)=0すなわち、e^(-kε)f'(ε)-ke^(-kε)f(ε)=0となるε(a<ε<b) が存在する。 両辺をe^(-kε)で割って移項すると、 f'(ε)=kf(ε) f(ε)≠0なので、f(ε)で割ると、 f'(ε)/f(ε)=k となる。

全文を見る
すると、全ての回答が全文表示されます。

関連するQ&A

  • 高校数学ロルの定理の証明

    ロルの定理;f(x)を[a,b]において連続、(a,b)において微分可能な関数とする。さらに、f(a)=f(b)のとき、f´(c)=0かつa<c<bを満たすcが存在するを証明 (本の記述)f(a)=f(b)≠0であればg(x)=f(x)-f(a)を考えることで、g(a)=g(b)=0となるから、最初から、f(a)=f(b)=0として証明してもよい。 (ア)f(x)≡0のときはa<x<bなる任意のxでf´(x)=0だから定理は成り立つ。 (イ)f(x)は恒等的に0でない時(f(x)≡0の否定です。PCで記号が出ません} f(d)≠0となるdが(a,b)に存在する。 (以下略) (疑問点) 最初の「f(a)=f(b)≠0であればg(x)=f(x)-f(a)を考えることで、g(a)=g(b)=0となるから、最初から、f(a)=f(b)=0として証明してもよい。」という部分では何をしているのでしょうか? また証明の流れ的に(ア)f(x)≡0のとき(イ)f(x)は恒等的に0でない時という場合分けは何を考えているのでしょうか?

  • ロルの定理の証明、高校数学、再質問

    ロルの定理;f(x)を[a,b]において連続、(a,b)において微分可能な関数とする。さらに、f(a)=f(b)のとき、f´(c)=0かつa<c<bを満たすcが存在するを証明 (本の記述)f(a)=f(b)≠0であればg(x)=f(x)-f(a)を考えることで、g(a)=g(b)=0となるから、最初から、f(a)=f(b)=0として証明してもよい。(★) (ア)f(x)≡0のときはa<x<bなる任意のxでf´(x)=0だから定理は成り立つ。 (イ)f(x)は恒等的に0でない時(f(x)≡0の否定です。PCで記号が出ません} f(d)≠0となるdが(a,b)に存在する。 仮にf(d)>0とすると最大値の定理より、、[a,b]にf(x)の最大値が存在するが、 最大値は0でない(aでもbでもない)から そこで最大値を与えるxをcとすると、∀x∈[a,b]に対し、f(c)≧f(x)よりlim(h→+0){f(c+h)-f(h)} /h≦0、lim(h→ー0){f(c+h)-f(h)}/h≧0となる。f(x)はcで微分可能だから、lim(h→+0){f(c+h)-f(h)} /h=lim(h→ー0){f(c+h)-f(h)}/h=0 ゆえにf´(c)=0 したがって定理は証明された。 ★の仮定をしないとイではどのように議論が進むのでしょうか?詳しく教えてください。

  • ロルの定理の証明

    まず、ロルの定理とは関数 f(x)が閉区間 (a,b)で連続、開区間 (a,b)で微分可能でf(a)=f(b)ならば f ' (c)=0, a<c<b を満たす実数cが存在する。 証明 (1) f(x) が定数のとき 常にf ' (x) =0 であるから、明らかに定理は成り立つ。 つ ※なぜ成り立つのでしょうか。簡単な例をあげていただきたいのですが。 (2) f(x)が定数ではないとき f(x)は閉区間(a,b)で連続であるから、最大値、最小値の定理より、この区間で最大値と最小値をもつ。 (i) f(a) = f(b)が最大値をとる点のx座標をcとすると、a<c<bであるから、a<c<bであるから、a<c+⊿x<bを満たす⊿xに対して f(c+⊿x) ≦ f(c) となる。  ゆえに、⊿x>0 のときf(c+⊿x) -f(c) /⊿x ≦ 0   (1) ⊿x<0 のときf(c+⊿x) -f(c) /⊿x ≧ 0 (2)  f(x)はx=cで微分可能であるから lim(⊿x→0) f(c+⊿x) -f(c) /⊿x = f ' (c) (1)より、f ' (c) ≦ 0      (2)より、f ' (c) ≧ 0 したがって f ' (c) =0 (ii) f(a) = f(b) が最大値であるとき、最小値をとる点をcとすると、a<c<b となる。 (1), (2)からロルの定理は成り立つ。 終 ※ (2)の部分に関していえば、cが最大値となるような、a,b間で連続のなめらかな曲線を書くと、f(c+⊿x) < f(c) であることが読み取れるので理解できるのですが、その逆の⊿x>0 のときf(c+⊿x) -f(c) /⊿x ≦ 0 の場合において、f(c+⊿x) は c + x の位置は c の左側 0より、またcが最大値なので、f(c+⊿x) < f(c) には変わりなし。 ただし、⊿x で割るので、f(c+⊿x) -f(c) /⊿x ≧ 0 となる。といった解釈でよろしいでしょうか。 次に、f(x)はx=cで微分可能であるから lim(⊿x→0) f(c+⊿x) -f(c) /⊿x = f ' (c) この式は微分係数の定義により導いたと思うのですが、いまいち、この式がぱっと頭にうかびません。 グラフを使ってこの式の導き方を表すことは可能ですか。 お願いします。

  • 平均値の定理の証明

    ロルの定理を用いて平均値の定理を証明する問題で f(x)の曲線から点a~bを結ぶ割線y=m(x-a)+f(a)を引くとなぜ点aとbが同じ高さになった曲線g(x)が求まるのか理解ができません。

  • コーシーの平均値の定理の証明

    証明の流れとしてF(a)=F(b)となるようなF(x)を考えロルの定理を使う。というふうな感じだと思うのですが とりあえず証明を見てみるとk=f(b)-f(a)/g(b)-g(a)としてF(x)=f(x)-f(a)-k{g(x)-g(a)}としてあり、確かにF(a)=0、F(b)=0で一致します。 このF(x)の決め方が分かりません。 例えばラグランジュの平均値の定理ならば元の関数f(x)と、点A(a,f(a))、B(b,f(b)を通る直線の方程式との差を作ればk=f(b)-f(a)/b-aとしてF(x)=f(x)-{k(x-a)+f(a)}で当然x=a,bでの差は0になるからF(a)=F(b)なのは直感的にも分かります。 しかしコーシーの平均値の定理の場合、関数がf(x)とg(x)の2つなのでどう考えればいいのか分かりません。 それとも同じような考え方ではダメなのでしょうか?

  • ロルの定理の前提『[a,b]で連続、(a,b)で微分可能』について。

    皆様、お世話になります。よろしくお願いします。 __________________________________ ロルの定理 f(x)が閉区間[a,b]で連続、開区間(a,b)で微分可能でf(a)=f(b) ならばf'(ξ)=0、a≦ξ≦bなる点ξが存在する。 ___________________________________ の前提部分の『閉区間[a,b]で連続、開区間(a,b)微分可能』 がいまいちよく分かりません。 定義域の端点においても微分可能が定義でき、なおかつ微分可能であれば連続であるので 『閉区間[a,b]で連続、開区間(a,b)微分可能』を『閉区間[a,b]において微分可能』とまとめてしまっても良いような気もするのですが、 このようにしない理由は何なのでしょうか? よろしくお願い致します。

  • 一様連続の証明について

    疑問点を整理しての再質問です。 よろしくお願いします。 定理:『閉区間〔a,b〕で定義された連続関数は一様連続である。』 の証明についてです。 一様連続とは 「任意のε>0に対してδ>0が存在して、|x-y|<δを満たす区間内の 全てのx、yに対し、|f(x)ーf(y)|<εが成り立つ。」 ということですので、 背理法でこの定理を証明する場合は 「あるε>0において、どのようなδ>0に対しても|x'-y'|<δ かつ|f(x')-f(y')|≧ε x'、y'∈〔a,b〕となるx'、y'が存在する。」・・・(※) ことの矛盾を導けばよいのですが、 ここで以下のサイトの命題4、1を見てください。 http://www.google.co.jp/search?hl=ja&safe=off&q=%E4%BA%95%E4%B8%8A%E6%B7%B3%E3%80%80%E4%B8%AD%E9%96%93%E8%A9%A6%E9%A8%93%E3%80%80%E8%AC%9B%E7%BE%A9%E5%86%85%E5%AE%B9%E3%80%80%E6%96%B0%E3%81%97%E3%81%84%E5%B9%B4&btnG=%E6%A4%9C%E7%B4%A2&lr= これは私が勉強している参考書「微分積分学 難波誠著」と同じ証明方法です。 ここでは部分列の極限値(x、y)においてのみ |f(x)-f(y)|=0となり、|f(x)-f(y)|≧ε>0に矛盾する、として 証明を完了しているのですが、 それでは(※)を満たすx'、y'が“一つも存在しない”ことにはならないので証明としておかしいような気がするのですが、 どうでしょうか? よろしくお願いします。

  • 一様連続の証明について

    度々すみません。 またお世話になります。よろしくお願いします。 定理:『閉区間〔a,b〕で定義された連続関数は一様連続である。』 の証明についてです。 一様連続とは 「任意のε>0に対してδ>0が存在して、|x-y|<δを満たす区間内の 全てのx、yに対し、|f(x)ーf(y)|<εが成り立つ。」 ということですので、 背理法でこの定理を証明する場合は 「あるε>0において、どのようなδ>0に対しても|x'-y'|<δ かつ|f(x')-f(y')|≧ε x'、y'∈〔a,b〕となるx'、y'が存在する。」・・・(※) ことの矛盾を導けばよいのですが、 ここで以下のサイトの命題4、1を見てください。 http://www.google.co.jp/search?hl=ja&safe=off&q=%E4%BA%95%E4%B8%8A%E6%B7%B3%E3%80%80%E4%B8%AD%E9%96%93%E8%A9%A6%E9%A8%93%E3%80%80%E8%AC%9B%E7%BE%A9%E5%86%85%E5%AE%B9%E3%80%80%E6%96%B0%E3%81%97%E3%81%84%E5%B9%B4&btnG=%E6%A4%9C%E7%B4%A2&lr= これは私が勉強している参考書「微分積分学 難波誠著」と同じ証明方法ですが、 見て分かる通り、この証明は部分列や「ボルツァーノ・ワイヤストラスの定理」を用いたりしてとても複雑です。 ですが私には部分列などを使う必要性が理解できません。 私の考えた証明はこうです。 『あるε>0に対して、δ>0を0に近付けていくと |xーy|<δにおいて|x-y|も0に近づく。 この時閉区間〔a,b〕にある点cにx、yが共に近づく と考えてよい。(δ→0でx、y→c) そしてこの時 |f(x)ーf(y)|→|f(c)ーf(c)|=0 (δ→0) これは|f(x)ーf(y)|≧ε>0 に反するので題意の定理は証明された。』 ずいぶん簡単ですが、 おそらくどこかに誤りがあるのだと思います。 どこに誤りがあるか分かる方、いらっしゃいましたら ご指摘よろしくお願いします。

  • 一様連続の証明について

    お世話になります。よろしくお願いします。 定理:『閉区間〔a,b〕で定義された連続関数は一様連続である。』 の証明についてなのですが、 以下のサイトの命題4、1を見てください。 http://www.google.co.jp/search?hl=ja&safe=off&q=%E4%BA%95%E4%B8%8A%E6%B7%B3%E3%80%80%E4%B8%AD%E9%96%93%E8%A9%A6%E9%A8%93%E3%80%80%E8%AC%9B%E7%BE%A9%E5%86%85%E5%AE%B9%E3%80%80%E6%96%B0%E3%81%97%E3%81%84%E5%B9%B4&btnG=%E6%A4%9C%E7%B4%A2&lr= この証明は私の使っている参考書「微分積分学 難波誠 裳華房」 と同じやり方の証明なのですが、全く意味が分からずに困っています。 上の証明を自分なりに解釈すると、 『定理が成り立たないとすると あるε>0が存在して、どのようなδ>0に対しても|x-y|<δ かつ|f(x)-f(y)|≧ε を満たすx、y∈〔a,b〕となるx、yが存在する。 この時c∈〔a,b〕とすると lim(x,y→c)|f(x)-f(y)|=0なので これは|f(x)-f(y)|≧ε>0に矛盾するので、定理が証明された。』 としているように見えるのですが・・・。 これでは違うのでしょうか? 質問が分かりづらいかと思うのですが、よろしくお願いします。

  • 一様連続の証明について(改)

    同じ問題の質問を何度もすみません。 お蔭様でだんだん分かってきましたので、あともう少しだと思うので、 よろしくお願いします。 定理:『閉区間〔a,b〕で定義された連続関数は一様連続である。』 の証明についてです。 一様連続とは 「任意のε>0に対してδ>0が存在して、|x-y|<δを満たす区間内の 全てのx、yに対し、|f(x)ーf(y)|<εが成り立つ。」 ということですので、 背理法でこの定理を証明する場合は 「あるε>0において、どのようなδ>0に対しても|x'-y'|<δ かつ|f(x')-f(y')|≧ε x'、y'∈〔a,b〕となるx'、y'が存在する。」・・・(※) ことの矛盾を導けばよいのですが、 ここで以下のサイトの命題4、1を見てください。 http://www.google.co.jp/search?hl=ja&safe=off&q=%E4%BA%95%E4%B8%8A%E6%B7%B3%E3%80%80%E4%B8%AD%E9%96%93%E8%A9%A6%E9%A8%93%E3%80%80%E8%AC%9B%E7%BE%A9%E5%86%85%E5%AE%B9%E3%80%80%E6%96%B0%E3%81%97%E3%81%84%E5%B9%B4&btnG=%E6%A4%9C%E7%B4%A2&lr=​ これは私が勉強している参考書「微分積分学 難波誠著」と同じ証明方法です。 ここまでは過去の質問と同じなのですが、 今回の本題はここからです。 さてこの定理は、区間が開区間では成り立たないので、条件として閉区間であることが必要ですが、 証明のどこで閉区間でないと成り立たない部分があるのかが分からないのです。 この証明では閉区間〔a,b〕を開区間(a,b)と置き換えてもそのまま成り立つような気がするのです。 この証明内で使われている「ボルツァーノ・ワイヤストラスの定理」は「有界な数列は収束する部分列を持つ」という定理ですが、 有界列というのはxn∈(a,b)のように開区間の範囲内でもよかったと思うので、これも証明内で閉区間〔a,b〕を開区間(a,b)に置き換えてもそのまま成り立つと思います。 この証明ではいったいどこで開区間では成立しない閉区間限定という条件を使っているのでしょうか? またどこかで勘違いをしていると思うのですが、 分からずに困っています。 よろしくお願いいたします。