一様連続の証明について

このQ&Aのポイント
  • 閉区間〔a,b〕で定義された連続関数は一様連続であることを証明します。
  • 一様連続とは、任意のε>0に対してδ>0が存在し、|x-y|<δを満たす区間内の全てのx、yに対して|f(x)ーf(y)|<εが成り立つことです。
  • 証明において、背理法を用いて矛盾を導きますが、必要性に疑問があります。提案された証明は簡単ですが、誤りがある可能性があります。ご指摘いただけると幸いです。
回答を見る
  • ベストアンサー

一様連続の証明について

度々すみません。 またお世話になります。よろしくお願いします。 定理:『閉区間〔a,b〕で定義された連続関数は一様連続である。』 の証明についてです。 一様連続とは 「任意のε>0に対してδ>0が存在して、|x-y|<δを満たす区間内の 全てのx、yに対し、|f(x)ーf(y)|<εが成り立つ。」 ということですので、 背理法でこの定理を証明する場合は 「あるε>0において、どのようなδ>0に対しても|x'-y'|<δ かつ|f(x')-f(y')|≧ε x'、y'∈〔a,b〕となるx'、y'が存在する。」・・・(※) ことの矛盾を導けばよいのですが、 ここで以下のサイトの命題4、1を見てください。 http://www.google.co.jp/search?hl=ja&safe=off&q=%E4%BA%95%E4%B8%8A%E6%B7%B3%E3%80%80%E4%B8%AD%E9%96%93%E8%A9%A6%E9%A8%93%E3%80%80%E8%AC%9B%E7%BE%A9%E5%86%85%E5%AE%B9%E3%80%80%E6%96%B0%E3%81%97%E3%81%84%E5%B9%B4&btnG=%E6%A4%9C%E7%B4%A2&lr= これは私が勉強している参考書「微分積分学 難波誠著」と同じ証明方法ですが、 見て分かる通り、この証明は部分列や「ボルツァーノ・ワイヤストラスの定理」を用いたりしてとても複雑です。 ですが私には部分列などを使う必要性が理解できません。 私の考えた証明はこうです。 『あるε>0に対して、δ>0を0に近付けていくと |xーy|<δにおいて|x-y|も0に近づく。 この時閉区間〔a,b〕にある点cにx、yが共に近づく と考えてよい。(δ→0でx、y→c) そしてこの時 |f(x)ーf(y)|→|f(c)ーf(c)|=0 (δ→0) これは|f(x)ーf(y)|≧ε>0 に反するので題意の定理は証明された。』 ずいぶん簡単ですが、 おそらくどこかに誤りがあるのだと思います。 どこに誤りがあるか分かる方、いらっしゃいましたら ご指摘よろしくお願いします。

  • vigo24
  • お礼率87% (859/977)

質問者が選んだベストアンサー

  • ベストアンサー
  • kabaokaba
  • ベストアンサー率51% (724/1416)
回答No.1

>おそらくどこかに誤りがあるのだと思います。 ありますね。そもそもリンク先の証明は あなたのいう「c」が本当にあるのかということを 議論しているわけで, 実際にはそんな都合のよい「c」なんかあるとはいえず, その状況下で評価してるわけです. リンク先の証明は複雑でもなんでもなく 頻繁に使われる手法です. つまり ・条件からとりあえず列を構成 ・収束する部分列の存在を示す (ここにBolzanoとかいろいろ手法がある) ・その部分列だけで考える という流れです. 具体的には >|xーy|<δにおいて|x-y|も0に近づく。 >この時閉区間〔a,b〕にある点cにx、yが共に近づく >と考えてよい。(δ→0でx、y→c) ここが間違い. 引き算したものが0にいくからといって そもそもそれぞれが収束するとは限らない. 例:xn=1/n+(-1)^n yn= (-1)^n xn-yn=1/n -> 0 xnとynがうまく閉区間[a,b]に入るように調整するのは容易です.

vigo24
質問者

お礼

ご回答どうもありがとうございます! >引き算したものが0にいくからといって そもそもそれぞれが収束するとは限らない. なるほど~。 関数をわざわざ数列に直すのがどうしても納得できなかったのですが、 x、yの収束値の存在するとは限らないという事情があったのですね。 例まで示して下さり、大変よく分かりました。 連休中ずっと考えていたのに分からなかったのですが、 解決に近付いてきました。 どうもありがとうございました。 すみません、あともう一点なのですが、 この定理の証明は、区間が開区間では成り立たないので、閉区間であることが重要ですが、 「ボルツァーノ・ワイヤストラスの定理」は「有界な数列は収束する部分列を持つ」という定理ですが、 有界列というのはxn∈(a,b)のように開区間の範囲内でもよかったと思います。 命題4、1の証明法は閉区間〔a,b〕を開区間(a,b)と置き換えてもそのまま成り立つような気がします。 この証明では閉区間限定という条件をどこで使っているのでしょうか? お手数でしょうが、よろしくお願い致します。

vigo24
質問者

補足

分かりやすいように新しい質問を立てました。 http://oshiete1.goo.ne.jp/qa3992571.html?ans_count_asc=20 お時間がありましたらまたよろしくお願いします。 この度はどうもありがとうございました。

関連するQ&A

  • 一様連続の証明について(改)

    同じ問題の質問を何度もすみません。 お蔭様でだんだん分かってきましたので、あともう少しだと思うので、 よろしくお願いします。 定理:『閉区間〔a,b〕で定義された連続関数は一様連続である。』 の証明についてです。 一様連続とは 「任意のε>0に対してδ>0が存在して、|x-y|<δを満たす区間内の 全てのx、yに対し、|f(x)ーf(y)|<εが成り立つ。」 ということですので、 背理法でこの定理を証明する場合は 「あるε>0において、どのようなδ>0に対しても|x'-y'|<δ かつ|f(x')-f(y')|≧ε x'、y'∈〔a,b〕となるx'、y'が存在する。」・・・(※) ことの矛盾を導けばよいのですが、 ここで以下のサイトの命題4、1を見てください。 http://www.google.co.jp/search?hl=ja&safe=off&q=%E4%BA%95%E4%B8%8A%E6%B7%B3%E3%80%80%E4%B8%AD%E9%96%93%E8%A9%A6%E9%A8%93%E3%80%80%E8%AC%9B%E7%BE%A9%E5%86%85%E5%AE%B9%E3%80%80%E6%96%B0%E3%81%97%E3%81%84%E5%B9%B4&btnG=%E6%A4%9C%E7%B4%A2&lr=​ これは私が勉強している参考書「微分積分学 難波誠著」と同じ証明方法です。 ここまでは過去の質問と同じなのですが、 今回の本題はここからです。 さてこの定理は、区間が開区間では成り立たないので、条件として閉区間であることが必要ですが、 証明のどこで閉区間でないと成り立たない部分があるのかが分からないのです。 この証明では閉区間〔a,b〕を開区間(a,b)と置き換えてもそのまま成り立つような気がするのです。 この証明内で使われている「ボルツァーノ・ワイヤストラスの定理」は「有界な数列は収束する部分列を持つ」という定理ですが、 有界列というのはxn∈(a,b)のように開区間の範囲内でもよかったと思うので、これも証明内で閉区間〔a,b〕を開区間(a,b)に置き換えてもそのまま成り立つと思います。 この証明ではいったいどこで開区間では成立しない閉区間限定という条件を使っているのでしょうか? またどこかで勘違いをしていると思うのですが、 分からずに困っています。 よろしくお願いいたします。

  • 一様連続の証明について

    疑問点を整理しての再質問です。 よろしくお願いします。 定理:『閉区間〔a,b〕で定義された連続関数は一様連続である。』 の証明についてです。 一様連続とは 「任意のε>0に対してδ>0が存在して、|x-y|<δを満たす区間内の 全てのx、yに対し、|f(x)ーf(y)|<εが成り立つ。」 ということですので、 背理法でこの定理を証明する場合は 「あるε>0において、どのようなδ>0に対しても|x'-y'|<δ かつ|f(x')-f(y')|≧ε x'、y'∈〔a,b〕となるx'、y'が存在する。」・・・(※) ことの矛盾を導けばよいのですが、 ここで以下のサイトの命題4、1を見てください。 http://www.google.co.jp/search?hl=ja&safe=off&q=%E4%BA%95%E4%B8%8A%E6%B7%B3%E3%80%80%E4%B8%AD%E9%96%93%E8%A9%A6%E9%A8%93%E3%80%80%E8%AC%9B%E7%BE%A9%E5%86%85%E5%AE%B9%E3%80%80%E6%96%B0%E3%81%97%E3%81%84%E5%B9%B4&btnG=%E6%A4%9C%E7%B4%A2&lr= これは私が勉強している参考書「微分積分学 難波誠著」と同じ証明方法です。 ここでは部分列の極限値(x、y)においてのみ |f(x)-f(y)|=0となり、|f(x)-f(y)|≧ε>0に矛盾する、として 証明を完了しているのですが、 それでは(※)を満たすx'、y'が“一つも存在しない”ことにはならないので証明としておかしいような気がするのですが、 どうでしょうか? よろしくお願いします。

  • 一様連続の証明について

    お世話になります。よろしくお願いします。 定理:『閉区間〔a,b〕で定義された連続関数は一様連続である。』 の証明についてなのですが、 以下のサイトの命題4、1を見てください。 http://www.google.co.jp/search?hl=ja&safe=off&q=%E4%BA%95%E4%B8%8A%E6%B7%B3%E3%80%80%E4%B8%AD%E9%96%93%E8%A9%A6%E9%A8%93%E3%80%80%E8%AC%9B%E7%BE%A9%E5%86%85%E5%AE%B9%E3%80%80%E6%96%B0%E3%81%97%E3%81%84%E5%B9%B4&btnG=%E6%A4%9C%E7%B4%A2&lr= この証明は私の使っている参考書「微分積分学 難波誠 裳華房」 と同じやり方の証明なのですが、全く意味が分からずに困っています。 上の証明を自分なりに解釈すると、 『定理が成り立たないとすると あるε>0が存在して、どのようなδ>0に対しても|x-y|<δ かつ|f(x)-f(y)|≧ε を満たすx、y∈〔a,b〕となるx、yが存在する。 この時c∈〔a,b〕とすると lim(x,y→c)|f(x)-f(y)|=0なので これは|f(x)-f(y)|≧ε>0に矛盾するので、定理が証明された。』 としているように見えるのですが・・・。 これでは違うのでしょうか? 質問が分かりづらいかと思うのですが、よろしくお願いします。

  • ある区間での関数の連続性を示すためには?

    閉区間[0,1]上で定義された実数値関数fは、次の二つを満たす (1)任意の実数a,b、ただし0≦a≦b≦1に対し、集合{f(y)|a≦y≦b}は、区間{f(a),f(b)}または{f(b),f(a)}を含む。 (2)任意の実数cに対し、区間[0,1]に含まれるf(x)=cとなるような実数x全体の集合は閉集合(空集合もありうる)となる このとき、fが区間[0,1]で連続であることを示したいのですが まず、連続性を証明する方法をよく知りません。 ε-δ論法が連続性を示す方法の一つだということを聞きましたが、大学一回生のときの授業で習っていないのであまりよくわかっていません。これは、ε-δ論法を使って証明するのでしょうか? 他には、教科書を見直したところ、中間値の定理の逆(当然成り立ちませんが)に似ているので、そのあたりを使うのかとも思ったのですが。。。 ヒントになりそうなホームページや、アドバイスを頂けたら幸いです

  • 関数の連続性

    問い lim[x→a]f(x)=b、lim[y→b]g(y)=cのとき、 lim[x→a]g(f(x))=cとなるか? 正しければ証明し、誤りなら反例を挙げよ。 私の答え  誤り 反例 関数g(y)がy=bで不連続であるとき この答えは合っていますか? この答えで反例を挙げたことになりますか?

  • C1級関数の一様連続性の証明

    C1級関数 f は、任意の閉区間 I = [a,b]で一様連続であることを、平均値の定理を使って示しなさい。(閉区間 I = [a,b]で連続な関数はIで一様連続である、という定理は使わずに) という問題です。答えを参考にしながら考えていきたいので、是非お力添えお願いします。

  • 証明の問題です。

    証明の問題です。 f [a,b]→R を連続関数とする。 f (c) > 0 (c∈(a,b)) ならばcを含む区間(c-δ, c+δ)が存在して x∈(c-δ, c+δ) ならば f (x) > 0 を示せ。 よろしくお願いします。

  • 連続関数・・・・

    (問) 閉区間[a,b]で連続なf(x)について、a≦f(x)≦bならば、f(c)=cとなるcが[a,b]に存在することを証明せよ。 (解) f(a)=aまたはf(b)=bならば、このaまたはbがcである。 ↑ってのは、分かるんですが、 a<f(a),f(b)<bの場合はどのように求めるのでしょうか?  ある参考書には、似たような問題で g(x)=f(x)-x という連続関数を[a,b]で考える  みたいなことが書いてあったんですが、これを利用しもいいのかどうかも分かりません。

  • 連続性のある関数を、中間値の定理に基づいて、実数解があることを示す方法がわかりません(ToT)

    微分積分を勉強しているのですが、全く理解できない問題がありまして・・・。 【問題】 方程式3x=2^x+2^-xは、区間(0,1)の中に少なくとも一つの実数解をもつことを示せ。 【解答】 f(x)=3x-(2^x+2^-x)とおけば、f(x)は全区間Rで連続であり、 f(0)=-2<0 f(1)=3-(2+1/2)=1/2>0 である。中間値の定理(※)により、 f(x)=3x-(2^x+2^-x)=0 であるようなxが、区間(0,1)の中に、少なくとも一つ存在する。 ●○●○●○●○●○●○●○●○●○●○●○●○●○●○ ※連続関数の中間値の定理 関数f(x)が、閉区間[a,b]で、連続でf(a)≠f(b)のとき、f(a)とf(b)の値kに大して、 f(c)=k である点cが、開区間(a,b)の中に少なくとも1つ存在する。 ●○●○●○●○●○●○●○●○●○●○●○●○●○●○ 読みにくいと思いますので、添付ファイルもご覧にいただきたいのですが、どうしてf(x)=3x-(2^x+2^-x)とおけば、f(x)は全区間Rで連続になるのでしょうか? 関数f(x)が「連続であるかどうか」を調べるには、例えば、f(x)をaで微分した「lim(x→a) f(x)」と、元の関数f(x)がx=aの時、すなわち「lim(x→a) f(x)=f(a)」、「f'(a)=f(a)」となる時、連続なんですよね? ですが、f(x)=3x-(2^x+2^-x)は、変数xが指数としてくっ付いてるので、どう微分していいのやら・・・。 なので、「全区間Rは連続であり」と言われても、全くピンときません(ToT) どうして「<0」「>0」など、0から目線で証明を進めているのかもわかりません(>_<) 皆様のお力をお借しいただきたい次第です。 よろしくお願いします<m(__)m>

  • ロルの定理の証明

    まず、ロルの定理とは関数 f(x)が閉区間 (a,b)で連続、開区間 (a,b)で微分可能でf(a)=f(b)ならば f ' (c)=0, a<c<b を満たす実数cが存在する。 証明 (1) f(x) が定数のとき 常にf ' (x) =0 であるから、明らかに定理は成り立つ。 つ ※なぜ成り立つのでしょうか。簡単な例をあげていただきたいのですが。 (2) f(x)が定数ではないとき f(x)は閉区間(a,b)で連続であるから、最大値、最小値の定理より、この区間で最大値と最小値をもつ。 (i) f(a) = f(b)が最大値をとる点のx座標をcとすると、a<c<bであるから、a<c<bであるから、a<c+⊿x<bを満たす⊿xに対して f(c+⊿x) ≦ f(c) となる。  ゆえに、⊿x>0 のときf(c+⊿x) -f(c) /⊿x ≦ 0   (1) ⊿x<0 のときf(c+⊿x) -f(c) /⊿x ≧ 0 (2)  f(x)はx=cで微分可能であるから lim(⊿x→0) f(c+⊿x) -f(c) /⊿x = f ' (c) (1)より、f ' (c) ≦ 0      (2)より、f ' (c) ≧ 0 したがって f ' (c) =0 (ii) f(a) = f(b) が最大値であるとき、最小値をとる点をcとすると、a<c<b となる。 (1), (2)からロルの定理は成り立つ。 終 ※ (2)の部分に関していえば、cが最大値となるような、a,b間で連続のなめらかな曲線を書くと、f(c+⊿x) < f(c) であることが読み取れるので理解できるのですが、その逆の⊿x>0 のときf(c+⊿x) -f(c) /⊿x ≦ 0 の場合において、f(c+⊿x) は c + x の位置は c の左側 0より、またcが最大値なので、f(c+⊿x) < f(c) には変わりなし。 ただし、⊿x で割るので、f(c+⊿x) -f(c) /⊿x ≧ 0 となる。といった解釈でよろしいでしょうか。 次に、f(x)はx=cで微分可能であるから lim(⊿x→0) f(c+⊿x) -f(c) /⊿x = f ' (c) この式は微分係数の定義により導いたと思うのですが、いまいち、この式がぱっと頭にうかびません。 グラフを使ってこの式の導き方を表すことは可能ですか。 お願いします。