• ベストアンサー

留数の求め方

関数論の再勉強中です。  半径R(R > 1)の上半円と実軸 -R ≦ z ≦ R で囲まれた閉曲線 C 内において   f(z) = g(z)/h(z) = e^(iaz)/(z^2+1)(z^4+1) の留数の求め方について教えて下さい。

質問者が選んだベストアンサー

  • ベストアンサー
  • gamma1854
  • ベストアンサー率54% (288/527)
回答No.2

α^4 + 1 = 0 です。

musume12
質問者

お礼

丁寧な回答まことにありがとうございました。

全文を見る
すると、全ての回答が全文表示されます。

その他の回答 (1)

  • gamma1854
  • ベストアンサー率54% (288/527)
回答No.1

f(z)=e^(iaz)/{(z^2+1)(z^4+1)} であるとすると、 z^4+1=0 の解をは、z=α, (α=e^{(2n+1)pi*i/4}, (n=0 ~ 3) z-α=u とおくと、 Res(f(z), α)=lim[u→0]【u*f(z)】 = e^(iaα)/(6α^5+4α^3+2α) = e^(iaα)/{4α(α^2 - 1)} ... (*) ここでα=e^(pi*i/4), e^(3pi*i/4). ともどして計算してください。 ーーーーーーーーーーーーーーー ※ 上記結果(*)は計算ミスがあるかもしれません。

musume12
質問者

補足

回答まことにありがとうございます。 > = e^(iaα)/(6α^5+4α^3+2α) から > = e^(iaα)/{4α(α^2 - 1)} ... (*) への変形がよくわからないのですが。

全文を見る
すると、全ての回答が全文表示されます。

関連するQ&A

  • 留数定理を用いた有理関数の無限積分

    教科書の例題に ∫[-∞→∞] 1/(x^2+1)dx という問題の解き方があります。そこには、 実軸上の線分[-r,r]と、原点を中心とする上半円Cr:|z|=rを結ぶジョルダン曲線Cを考える。無機は正方向とする。留数定理によれば ∫[C] f(z)dz = ∫[-r→r] f(x)dx + ∫[Cr] f(z)dz = 2πiR(i) (ただし、R(i)はz=iにおける留数) である。R(i) = 1/2i であるから、 ∫[-∞→∞] f(x)dx = π-lim[r→∞] ∫[Cr] f(z)dz の形に書けるから、最後の項=0 が示されればよい。 と書いてあります。でも、私にはなぜ 最後の項=0 を示す必要があるかがわかりません。留数定理より、 与式 = 2πiR(i) = π と求めてはいけないのでしょうか?

  • 留数の求め方。

    問題:次に示す関数について各問いに答えなさい。 f(z)=e^jz/{(2z-π)(z-π)} (1)関数fの特異点における留数を求めなさい。 (2)積分路C:|z-1|=1の正の向きに沿って積分しなさい。 (3)積分路C:|z|=1の正の向きに沿って積分しなさい。 留数については、特異点が、z=π/2,πで、f(z)を部分分数に分解していくですよね。そこで問題なのが ・虚数が含まれてても、係数合わせでといていいんでしょうか? ・そのあと、どうすれば留数が出てくるんでしょうか? ご指導よろしくお願いします。

  • 留数

    どなたか、次の関数f(z)の留数を求めてくれません f(z)=exp(-ipz)/(z^2+a^2)^n の z=iaの留数と z=-iaの留数をそれぞれ求めたいです。 急ぎです。どなたかお願いします。

  • 留数定理を用いる計算

    曲線Cが|z-i| = 1 で表される円であるとき、∫c {(e^z)/(z^4 -1)}dz の値を求めよ という問題にて、 (z^4 -1)=(z+i)(z-i)(z+1)(z-1)  Cはz=iを中心とした半径1の円なので、正則で無い点はz=iのみ z=iにおける留数 Res[f,i]=lim[z→i](z-i)f(z) =(e^i)/{2i(i+1)(i-1)} =(e^i)/(-4i) 留数定理より、 ∫c {(e^z)/(z^4 -1)}dz  =2πi{-(e^i)/4i} =-πei/2   と計算しました しかし、解答は -{(πcos1)/2} - {(πsin1)i}/2 とのことでした。 解答から、正則で無い点が2つ、それぞれが2位の極だと考えたのですが、見当がつきません ご教授、お願いします

  • 留数の計算

    留数を勉強してるのですが 求め方がどうもよくわかりません。 例えば 1/(1+z^4)の留数は1+z^4がゼロになるzが留数になる可能性があるのは わかるんですが なぜe^(πi/4)とe^(3πi/4)だけが留数になるのかが よくわかりません。 あと、x^2/(x^4+5x^2+6)やf(x)cos(Θ)/g(x)の形をした 問題もどうやって留数を求めたらよいのかわかりません。 テキストにはローラン展開がどうのこうのとありますが ローラン展開じたいのやり方は書かれておらず ローラン展開するとどういう形になるかだけ示されていて ローラン展開ってどうやるんだ?と言う状態です。 わかりやすく説明してくださるとありがたいです。 よろしくお願いします。

  • 複素関数ー留数についての質問です

    関数 g(z) = 1 / { (e^z + 1)(z - 1)^2 } についての問題です この関数につき極は z = 1, ( 2n + 1 )π (n = 0,1,2,・・・) と求められました。 問題は 複素平面上で原点を中心とする一辺 2R=4πN (Nは正整数)の正方形を積分路Cとした時、g(z)の線積分を求めよ。 です。 R(1) = - e / ( e + 1 ) となりました。 R( (2n+1)π ) の値を求めて、留数定理により g(z)の線積分 = 2πi{ R(1) + R( (2n+1)π ) } と求めると思うのですが。 R( (2n+1)π ) の値を求める計算が煩雑でわかりません。 この方法でもよいですし、別解で簡単に解ける解き方がある場合はぜひ教えてください。

  • 留数

    f(z)=3z/(3z^2-5z-2) 上の関数の留数をもとめよという問題なのですが、 Res[f(z),-1/3] =lim[z→-1/3](3z+1)f(z) =lim[z→-1/3]3z/(z-2) =3/7 と求めたのですが、教科書の回答は1/7でした。 どこを間違えているのか解説をおねがいします

  • 複素解析の留数の計算

    こんばんは。 複素解析の問題で、キャンパスゼミやその他の資料も参考にしたのですがどうしてもわかりません。問題は以下のものです。 複素関数 f(z)=e^z-i について点 z=πi/2 における 1/f(z) の留数を求めよ。 原点を中心とした半径πの半時計回りの円をCnとする。 ローラン展開から求めるべきなのでしょうか? だとすれば、利用するマクローリン展開だけでも示していただけると大変ありがたいです。 宜しくお願いします。  

  • 留数について

    留数について f(z)=1/z^2のz=0における留数がなんで、0になるのか教えてください。 留数=1/2πi∫周回積分f(z)dz です。 1/z^2の積分は、-1/zですよね? 周回積分は0~2πですよね? ∞に発散してしまうんですが、なにか考え方が間違っているんでしょうか?

  • 留数の求め方について

    f(z)=z^(-1)*cotzのz=0における留数の求め方が分かりません。 z=0が2位の極である所までは分かるのですが、 公式を適用しても留数が求まらず行き詰っています。 回答よろしくお願いします。