• ベストアンサー

2次元における外積について

プログラミング方面で2次元の外積なるものが定義されていました。 u=(a,b), v=(c,d)としたとき、 u×v=ad-bc というものです。3次元とは異なり、ベクトルからスカラーへの演算になっています。 外積は3次元でしか定義されないと教えられたので、 これは外積なのか、外積もどきなのか判断に困っています。 数学的にはこれを外積と呼ぶのでしょうか?

質問者が選んだベストアンサー

  • ベストアンサー
回答No.1

外積代数(参考URL)と呼ばれる分野があって,u∧v = ad - bcはその意味では確かに外積となっています. 外積代数とは線形空間Vに外積とよばれる演算を付け加えたもので,u, v, w ∈ V, a, b ∈ C (たとえば複素数体)次を満たすものとして定義されています: [結合性] (u∧v)∧w = u∧(v∧w), [交代性] u∧v = -v∧u (⇔ u∧u = 0), [双線形性] (av)∧(u) = a(v∧u) = v∧(au), (u + v)∧w = u∧w + v∧w, u∧(v + w) = u∧w + u∧w. これがどう関係するかというと,線形代数の最初にやるように適当な基底x, yを選んで数ベクトル(a, b)とax + byを同一視します.するとこれらのベクトルにはふつうのスカラー倍と足し算の他に外積もあるので (ax + by)∧(cx + dy) = (ax)∧(cx) + (ax)∧(dy) + (by)∧(cx) + (by)∧(dy) [双線形性] = (ac)(x∧x) + (ad)(x∧y) + (bc)(y∧x) + (bd)(y∧y) [双線形性] = (ad)(x∧y) - (bc)(x∧y) [交代性] = (ad - bc)(x∧y) となり,これを同じようにad - bcと同一視すればu∧v = ad - bcとなるわけです. 同じ事を3次元のベクトル空間でやりa(y∧z) + b(z∧x) + c(x∧y)と(a, b, c)を同一視すればふつうの外積が復元できたはずです(僕なんかは外積の定義が必要になると,上の3つの性質から計算してあのめんどくさい式を出すことがたまーにあります).人生で一回くらいはやってみるといいと思います.なのでこの外積はお馴染みの外積でもあります.

参考URL:
http://ja.wikipedia.org/wiki/外積代数
fooinf
質問者

お礼

外積代数、面白そうですね。今度じっくり勉強しようと思います。 解答ありがとうございます!

関連するQ&A

  • 外積 商 次元

    前回、内積にはなぜ商が定義されないのか 質問させて頂きました。 URL:http://okwave.jp/qa/q7403145.html 外積の商が定義されないことを示そうとしています。 ベクトルa=(1,0,0)とベクトルxの外積を以下に示すと、 a×x=bから、 (1,0,0)×(0,1,0)=(0,0,1) (1,0,0)×(1,1,0)=(0,0,1) (1,0,0)×(2,1,0)=(0,0,1) とベクトルbとなるベクトルxが複数存在します。 よって、 (1,0,0)×(γ,1,0)=(0,0,1)が成り立つ。 γ成分は、a=(1,0,0)における並行成分が任意であるということ。 したがって、ベクトルaとベクトルbが既知でもベクトルxが一意に 定まらないため商が定義されない。 上記の内容でOKでしょうか? また、内積と外積が定義される次元についてですが、 スカラーの内積とスカラーの外積は存在しないと思うので最低でも 2次元以上のn次元で定義されると認識でOKでしょうか? 以上、ご回答よろしくお願い致します。

  • n次元ベクトルの外積の定義

    n次元ベクトルの外積の定義はどういうものなのでしょうか? そもそもできるのでしょうか?外積は3次元特有のものでしょうか? 例えば、n次元ベクトルの内積は、例えば (a1,a2,.....,an)・(b1,b2,.......,bn) =a1*b1+a2*b2+......+an*bn と定義できると思っています。 こういう感じでn次元ベクトルの外積は定義できますか? ご教授ください。

  • 外積の定義

    私は外積は3次元ベクトルに対してのみ 定義されるものだと思っていました。 が、最近ネット上では他の次元に対する外積 という言葉もちらほら見かけます。 つきましては、3次元以外の外積が一般的かどうか。もし、一般的ならばその定義はどうなっているか 教えて下さい。

  • 外積はなぜ2階のテンソルなのですか?

    昨日も質問させていただきましたが,もう一度質問させてください. 以下,クロネッカーのデルタとエディントンのイプシロン及びニュートンの総和規約を使っています. 内積はu・v=(δij)(ui)(vj)と表され,u,vの2つと縮約をとってやっとスカラー(0階テンソル)になるので内積を表すテンソルは2階テンソルだと思います. 外積はu×v=(εijk)(uj)(vk)と表され,u,vの2つと縮約をとってもまだベクトル(1階テンソル)です.外積操作が2階のテンソルならこの時点でスカラーになるはずですが,実際はベクトルになります.これは1階高い3階のテンソルだからなのではないのですか? そして,ここでwとの内積をとるスカラー三重積(u×v)・w=(εijk)(uj)(vk)(wi)はスカラーであり,スカラー三重積を表すテンソルは3階のテンソルで間違いないですか? 以上ですが,できれば上の文章のどこが間違っているのかを指摘してくださればありがたいです.

  • ベクトルの外積 

    ベクトルの外積の2次元の計算で r×(r2-r1) の計算を考えているのですが 外積の定義を見ていると2次元では考えられないような気がするのですが この計算はできるのでしょうか?? 誰か詳しい方がいらっしゃればアドバイスお願いします。

  • ベクトルで外積の逆演算、外商ってある?

    3次元ベクトルにおいて、 a=(a[x],a[y],a[z]),b=(b[x],b[y],b[z]) の外積 a×b=(a[y]b[z]-a[z]b[y], a[z]b[x]-a[x]b[z], a[x]b[y]-a[y]b[z]) が定義できます。いくつかの性質もあります。 http://ja.wikipedia.org/wiki/%E3%82%AF%E3%83%AD%E3%82%B9%E7%A9%8D ところで、逆演算も定義としてはありえると思います。 a÷b=xとは、 x×b=aとなる3次元ベクトルx ただ、そのようなxは一意的には存在しません。 しかし、外積を内積に変えて、 x・b=a(aは実数)となる3次元ベクトルx を考えると、そのようなxの集合は、3次元空間で平面になります。 ちょっととっぴにいうと、内積の逆演算、内商a:bは、平面になるということもできます。 では、 x×b=aとなる3次元ベクトルx を考えると、そのようなxの集合はどうなるのでしょうか? また、平方根を制限したものを√で表したりするように、逆演算はしばしば制限したものを考えます。 なにか制限することで、外積の逆演算、外商を考えれないでしょうか?なにか制限することで、内積の逆演算、内商を考えれないでしょうか? 他に発展的なことは考えれないでしょうか?

  • ベクトル、内積、外積など

    ベクトル、内積、外積など はじめまして、私は情報系の分野を専門的に学習している学生です。 情報分野ではそれなりの知識を持っているので、あえて数学的な 質問をさせていただきます。   ・三次元平面上に点ABCがあります。   ・点ABCを含む平面上に点Pがあります。 三角形ABC内に点Pが存在することを確かめるには、 どのようにすればよいでしょうか? またこれには以下のような制約があります。   ・パソコン上で計算するので、なるべく計算回数    (特に乗算、除算)を抑えたい。   ・パソコン上では三角関数などは級数なので精度、    処理速度、共に両立できない。 なので、なるべく少ない計算量で、四則演算のみを用いた 解法が必要です。 以下は私の考えた手順ですが、   (1)ベクトルBcとBa(もしくはBp)との外積によりベクトルNを得ます。   (2)ベクトルNとBcとの外積によりBcに直行するベクトルBc´を得ます。   (3)ベクトルBc´とBpとの内積が負ならば、点Pは線分B-Cの外に位置します。   これをB-C、C-A、A-Bと行うことで判定します。 これでは外積を2回、内積を1回計算する必要があり、計算量が多いので より簡潔な手法が必要です。 (本当に数学って大切ですね、もっと勉強しておけばよかった(^^;)

  • 内積と外積について

    内積と外積について 2つのベクトルをA,Bと表し、2つのベクトルのなす角をθとします。 また、A=(ax,ay,az),B=(bx,by,bz)です。 内積はA・B=|A||B|cosθと表されこれはスカラー量です。 内積はAのBへの正射影とBの積(もしくは、BのAへの正射影とAの積)と認識しています。 また、A・B=axbx+ayby+azbzとも表されこれはスカラー量です。 A・B=|A||B|cosθ,A・B=axbx+ayby+azbzはどちらも内積の定義なのでしょうか? 外積は|A×B|=|A||B|sinθと表されますが、これもスカラー量ですよね。 外積はベクトル積と呼ばれることもあるようですが、 これは、外積の定義A×B=(aybz-azby,azbx-axbz,axby-ayax)がベクトルとなるからベクトル積と 言われるのでしょうか? |A×B|=|A||B|sinθは定義ではないのですか? 以上、よろしくお願い致します。

  • 内積と成す角

    理系の大学3年生です。 線形代数,微積分,数理統計のみ受講したことがあります。 ベクトル空間についてもよくわかっていないのですが、 n次元ベクトルu,vに対して内積(u,v)を定義することが出来ますよね。 また内積を用いてベクトルの大きさ|u|=√(u,u)を定義できますよね。 (実は一般的な内積の定義の仕方もよく知りません。 (u,v)=u1*v1+u2*v2+...+un*vnでいいのでしょうか?) さて、ここで高校で習った内積の定義を思い出すと   (u,v) = |u|*|v|*cosθ と習いました。 変形して   cosθ = (u,v)/{|u|*|v|}  ---(*) となり、二つのベクトルの成す角が求まる、と習いました。 2次元ベクトル,3次元ベクトルならば問題ないのですが。 式(*)の右辺はn次元ベクトルの場合でも機械的に計算して値を求めることが出来てしまいますよね。 ではその場合、2つのn次元ベクトルが成す角って何なのでしょうか? n次元ベクトルでも2つあれば、両方を含む平面を考えることが出来るということでしょうか? 感覚的でよいので、この場合の成す角θについて何らかの解説をお願いできたらと思います。

  • V・(∇×V)=?

    V=(u,v,w)はベクトルです。 V・(∇×V)=u(∂w/∂y-∂v/∂z)+v(∂u/∂z-∂w/∂x)+w(∂v/∂x-∂u/∂y) で0になりそうもないです。 一方で微分演算子の∇はベクトルとして扱われるのでベクトルの外積 の形をもつ∇×VはVと直角になり、 V・(∇×V)=0 になると思うんですが、この考えは間違いでしょうか?