• 締切済み

mod計算について

nが素数p,qの積からなる合成数のとき、例えば a mod n を考える場合、aはp,qを因数に含みませんよね? つまり、aとnは互いに素? 合ってますでしょうか?

みんなの回答

  • info22_
  • ベストアンサー率67% (2650/3922)
回答No.2

>aはp,qを因数に含みませんよね? 間違い。含む場合もあるから、「含まない」とは言えない。 従って >つまり、aとnは互いに素? この結論は間違い。aとnは互いに素でない場合もあるから 「aとnは互いに素」とは言えない。 ■反例その1  15 mod 6 = 3  n=6=2*3(p=2,q=3), a=15=3*5  nとaは共通因数3(=q)を持つ。  つまりaとnは互いに素ではない。 ■反例その2  16 mod 6 = 4  n=2*3(p=2,q=3), a=16=2*2*2*2  nとaは共通因数2(=p)を持つ。  つまりaとnは互いに素ではない。

  • Tacosan
  • ベストアンサー率23% (3656/15482)
回答No.1

「mod を考える」だけなら, そんな制限に意味は全くありませんが....

関連するQ&A

  • p,qが素数のときn^{(p-1)(q-1)+1}≡n (mod pq

    p,qが素数のときn^{(p-1)(q-1)+1}≡n (mod pq)になりますか? nがpともqとも互いに素であるときは、 Fermatの小定理を使えばn^{(p-1)(q-1)}≡1 (mod pq) が言えるので、標記の命題は言えると思うのですが pまたはqのいずれか一方がnと互いに素でないとき n^{(p-1)(q-1)}≡1 (mod pq)は言えないものの n^{(p-1)(q-1)+1}≡n (mod pq)は言えてしまっているように思えます (私がやったケースはp=3,q=11の場合です)。 これは正しいのでしょうか? 正しいとしたら何故ですか?

  • 拡張ユークリッド互除法について

    大学で習ったのですが、いまいちピンとこないので教えてください。 例えば ax = 1 mod n みたいな場合、xがaの逆元になるのでしょうが、逆元を持つ条件として gcd(a,n)=1である必要があると思います。 法nがn=pq(p,qは素数)みたいな合成数でも、逆元はある時はありますよね? aとnが互いに素であればいいのだから… それとも法は素数じゃないとダメなんでしょうか? 私の解釈は間違ってますか?

  • 素数の集合をmod pで分類すると

    素数の集合P={2,3,5,7,11,13,…} に対し、素数pをひとつとります。 p以外の素数をpで割った余りは、 1, 2, …, p - 1 となりますが、それらは同じ程度存在するのでしょうか? つまり、n個の素数の集合を P(n)={2,3,5,7,11,13,…,p_n} (ただし、p_nはn番目の素数) とし、 n→∞のとき、 ♯{q∈P(n)|q≡1 (mod p)}/n → 1/(p-1) ♯{q∈P(n)|q≡2 (mod p)}/n → 1/(p-1) … ♯{q∈P(n)|q≡p-1 (mod p)}/n → 1/(p-1) は成り立つのでしょうか。

  • a^2+b^2=c^2を満たす互いに素な自然数a,b,cについて、cが

    a^2+b^2=c^2を満たす互いに素な自然数a,b,cについて、cが素数p,qを用いてc=p×qと表せるとき m^2+n^2=p^2およびs^2+t^2=q^2を満たす互いに素な自然数も必ず存在し a=ms-nt,b=mt+nsと表すことができるのではないかと ピタゴラス数の表を見ていて思いました。 正しいでしょうか? 例えば、(a,b,c)=(33,56,65)のときc=65=5×13となるので p=5,q=13となり、m=4,n=3,s=12,t=5とすると a=4×12-3×5=33、b=4×5+3×12=56が成り立ちます。 但し、上記の書き方は曖昧さがあり、 mとnを交換した場合、sとtを交換した場合について言及できていません。 c=65=5×13の場合も、m=3,n=4,s=12,t=5とすると a=3×12-4×5=16、b=3×5+4×12=63となり (a,b,c)=(16,63,65)というもう1つの 互いに素な自然数の組み合わせができてしまいます。 組み合わせによっては負数になってしまうこともあります。 c=25=5×5の場合も成り立つようなので p=qの場合も踏まえ標記の内容が正しいかどうかお教えください。 また、cが3つ以上の素因数の積で表せる場合はどうでしょうか?

  • 最大公約数を求めたい!

    二つの数字の最大公約数を求めたいのですがどうしたらいいのかわからず困っています…。プログラムに関しては初心者なのでどなたか分かりやすく教えてもらえませんか?? <さらにもし出来る方がおられたら…>------------------------------------ 実は最終的にはある数(a(素数))があって、そのaと”たがいに素”である数(b)をプログラムで求めたいんです…。 ある本によると適当な二つの素数p、qがあるとしてこのふたつの積(つまりp*q)をmとします。また、(p-1)(q-1)=aとすると ”gcd(b,a)≡1(mod m)” という式を満たすんだそうです…。 ※この中にでてくる値で実際に分からないのは"b"のみです。 ※ここで書いているgcd(b,a)というのはaとbの最大公約数のことです。 --------------------------------------------------------------------- かなり難しいのでこの質問の回答をいただくと本当に助かります。 よろしくお願いしますm(_ _)m

  • 既約剰余類群の証明

    1つめは剰余類の掛け算。2つめは互除法の原理がわからないので質問します。 読んでいる本では、(a,b)でaとbの最大公約数を表すことにし、(k,n)=1⇔ kとnは互いに素。 ̄0(本では0の上に ̄)を余りが0の類としています。 定義 Z/nZの部分集合 { ̄K|(k,n)=1,1≦k≦n-1}は×に対して群になっている。これを(Z/nZ)*と書き、既約剰余類とよぶ。と書かれていて。 ×に関して閉じていることを確認しましょう。nと互いに素であるk,lがあるとき、その積klもnと互いに素になります。klをnで割った商をq,余りをmとすると、 kl=qn+mと書くことができます。kl≡qn+m (mod n) ∴kl≡m (mod n)より、ここからが1つめのわからない計算です。 ̄k× ̄l= ̄m 自分は、n=10,k=3,l=9,m=7 3×9=2×10+7として3を2で割った余り、9を2で割った余りそれらの積が、7を2で割った余りに等しいかを計算したのですが、2以降3,4,5・・・nについても成り立つと思っていました。しかし、n=10,k=3,l=9,m=7のとき、3と9を3で割った余りの積0、7を3で割った余り1と両辺は一致しません。この場合 ̄k× ̄l= ̄mは3を10で割った余り、9を10で割った余りそれらの積が、7を10で割った余りに等しいかを計算したときだけ成り立つことを書いているのかがわかりません。 ̄k× ̄l= ̄mの具体的な計算を教えてください。またこの後が、2つめのわからない点です。互除法の原理 a,bを自然数とするaをbで割った余りがrのとき、(a,b)=(b,r) より(m,n)=(kl,n)=1もわかりません。m=kl-qn よりmをnで割った余りkl(klはnと互いに素)から、(m,n)=(n,kl)と考えました。kl≡m (mod n)より単純にmをklに書き換えただけとも思いました。(m,n)=(kl,n)=1を説明してください。 本では、(m,n)=(kl,n)=1よりmもnも互いに素になります。ですから、×について閉じています。と続きます。

  • オイラーの定理(整数)

    nは自然数、aは整数とする。aとnが互いに素な時、a^{φ(n)}≡1( mod n)が成り立つ。 ここでφ(n)は「n以下の自然数でnと互いに素なものの個数を表す」"オイラーの関数"である。 この定理の例証で、例えばn=45=3^(2)*5のときa=7として考えます。 φ(45)=φ(3^2)*φ(5)となり、φ(3^2)=6、φ(5)=4です。 フェルマーの小定理よりmod 5 で、7^φ(45)={7^φ(5)}^φ(3^2)は {7^φ(5)}≡1 (mod 5)より、7^φ(45)≡1 (mod 5 )・・・(1)になり。 次に7^φ(3^2)≡1(mod 3^2)をしるします。フェルマーの小定理より mod 3 で 7^(3-1)≡1なので7^(3-1)=3k+1、 7^φ(3^2)={7^(3-1)}^3=(3k+1)^3=(3k)^3+3C1(3k)^2+3C2(3k)+1 3C1、3C2は3の倍数なので、7^φ(3^2)≡1(mod 3^2)・・・(2)です。 よって、7^φ(45)={7^φ(3^2)}^φ(5)≡1(mod 3^2)となります。 ここからが分からない箇所なのですが、中国の剰余定理から、 (1)かつ(2)⇔7^φ(45)≡■(mod 3^(2)*5)となる■が、1つだけ存在します。と書いてありますが、自分は中国の剰余定理は、m、nを互いに素な自然数とする。 x≡a(mod m)かつ x≡b(mod n)を満たす整数xはmnを法として、ただ1つ存在する。と書いてあることから、割る数が違えば、a,bのように余りもちがう場合に、整数xはmnを法として、ただ1つ存在する。と思っていたのですが、 この例証では、■≡7^φ(45) (mod 5)かつ■≡7^φ(45) (mod 3^2)のような余りが 一緒の場合を同時に満たす■を求めているような気がして、中国の剰余定理があてはまるか不安です。 自分の考えの間違いや、余りが一緒の場合でも中国の剰余定理が使えるかを教えてください。お願いします。 本では、■=1のとき(1)、(2)が成り立つので、■=1だとわかります。 よって7^φ(45)≡1(mod 45 )となることがしるされました。としめくくっています。

  • modに関する証明問題

    pをp≡3mod4を満たす素数として、a≡b^2mod pが解を持つとしたとき a^(p+1)/4 が a の mod p での平方根になる ことを示したいのですが、どうしてそうなるのか、さっぱりです。 どなたか教えていただけないでしょうか。

  • RSAの公開鍵

    RSAは二つの素数p、qから乗算された合成数Nと (p-1)(q-1)と互いに素な整数eを公開鍵とするそうですが、 同じ平分Mをeだけ変えてNは同じ値を使って2種類の暗号文を作った場合、 2つの暗号文が手に入れば鍵を知らなくても複合化されてしまうそうですが、 どうしてでしょうか。

  • (mod p)?

    pが素数、a,bがZに含まれるとき、次式を示せ。 a≡b(mod p)⇒a^p^k≡b^p^k(mod p^(k+1))