• 締切済み

実数の連続性(超実数が存在しないこと)をデデキント

実数の連続性(超実数が存在しないこと)をデデキントの切断をつかって背理法で証明してください。 有理数から無理数を定義するのとおんなじようなかんじでできませんか?(;_;) お願いします(;_;)

みんなの回答

  • stomachman
  • ベストアンサー率57% (1014/1775)
回答No.2

 「実数の連続性」とは「連続の公理」を満たすということ。連続の公理を満たす順序体は(同型のものを同一視すると)ひとつしか存在しないんで、実数体Rを「連続の公理を満たす順序体」として定義できる訳です。  さて、「連続の公理」の互いに同値な表現が様々知られていて、それぞれとても有用ですけれども、それらのうちでご質問に一番即していると思われるのは、 ○(デデキントの公理): 全順序集合Rの切断を<A, B>とする。(すなわち、A∩B=∅, A∪B=R, ∀x∀y(x∈A ∧ y∈ B ⇒ x<y)。)任意の切断について、Bに最小元があるか、Aに最大元があるとき、Rは連続であると言う。 という表現でしょう。  すると、「有理数から無理数を定義するのとおんなじようなかんじで」実数体Rの切断をやってみても、(実数の連続性⇔デデキントの公理から)実数しか出て来ない。以上おしまい。  なので、実数体の切断では超実数を定義できないし、超実数体は「連続の公理を満たす順序体」ではあり得ない。しかし、これが意味するのは「超実数が存在しないこと」ではなくて、「超実数がどういうものではあり得ないか」という制約だけです。

  • alice_44
  • ベストアンサー率44% (2109/4759)
回答No.1

それをやっても、 実数体は実数でない超実数を元に持たない という自明な結果しか得られない気がする。

関連するQ&A

  • 実数の構成

    こんにちは。今有理数から実数を構成しています。その方法としては、有理数aに収束するすべての有理数の数列を考え、その同値類を実数と定義し、 コーシー列の定義(ε-n法)によって実数に収束する実数列を考えてきました。 今以下のような問題が与えられています。 1. x^2=2 となるような実数xがあることを示せ。 2. bが有理数の時,bに収束する無理数の数列がある事を示せ。 まず1についてですが、背理法によりxが有理数にならない事を証明し(証明済み)そうすればxは無理数になるとしたかったのですが、今の段階でこの世に有理数と無理数しかないと想定してはいけないので、この方法は使えそうもありません。 今の所無理数とは上に述べたaに収束するすべての有理数の数列の値域以外にある数を言うようです。 2.に関しては、有理数の数列ならば、コーシー列の定義により可能なのですが、お手上げです。どなたか詳しいかた証明法やアイデア等、詳しく教えてください。宜しくお願いします。

  • 実数の定義について

    実数の定義は、いろいろあるようですが、 "切断による定義" が理解できずにいます。 よく言われるのが、 " 有理数Qの切断を実数Rとする " というのがありますが、 そもそも有理数しかない集合を切断したところで、 なぜ実数が定義できるのか、よくわかりません。 これとは異なり、 " 有理数体における基本列(コーシー列)全体のなす集合を実数とする " というのは何となく理解できています。 (基本列の極限をとると無理数が生成される様子がイメージできる) 両者の定義は、数学的には同じということらしいですが、 とてもそうは見えません。 切断による実数の定義はどのようなイメージができれば 理解できますか?

  • 実数は連続?超越数も実数ですか?

    有理数が連続でないことはわかります. しかし,いろんなところに実数は連続であるということが書いてあります. ということは,超越数も実数なんですね? 実数が連続であることをわかりやすく説明しているサイトか図書を ご存知でしたら教えて下さい. 工学系の大卒ぐらいでわかる内容のものがありがたいです.

  • 連続関数について

    y=f(x)なる実数全体で定義された実数値関数を考えます。このとき、 xが有理数の時、f(x)は無理数であり、 xが無理数の時、f(x)は有理数となるような連続関数y=f(x)は存在するのでしょうか。

  • 無理数は連続ですか?

    有理数は無理数によって切断される、そして、その切断する数を無理数という。 つまり、有理数は無理数によって切断されるので連続ではないということは理解できます。 では、無理数の連続性はどのように考えればよいでしょうか? 詳しく説明されているページ等の紹介でもよいです。 よろしくお願いします。

  • 有理数と実数とではどちらが多いか

    有理数も実数も無限に多く存在しますよね?上限も下限も無いですし。 私は実数の方が有理数より多く存在すると思うんですけど、実際のところはどうなんでしょうか?どちらも無限にあるから、なんともいえませんでしょうか?これって、証明とかされてるんですか?だとしたら、わかり易く教えていただきたいです。ご教授お願いします。

  • 直接証明と背理法

    http://www.amazon.co.jp/review/R1JEGJU88JQWPS/ref=cm_cr_rdp_perm のコメントを見て疑問が出てきました。 まず、議論の前提を書きます。 [前提 1] 議論の範囲は、上のリンクのコメントの以下です。 文頭の 『「√2が無理数」の証明は』 から、 段落が変った『つまり』 の手前まで。 [前提 2] 『直接証明』の、言葉の定義は知りませんが、 少くとも、『背理法』かつ『直接証明』という証明は存在しないと思っています。 以降その理解で書くので、これが変であれば指摘して下さい。 では、疑問(本題)を書きます。 [疑問 1] 私には、これは背理法に見えます。 なぜなら、  [仮定] m, n を非負整数(同時に m/n を有理数となる)。  [目標] 『2n^2』と『m^2』の『2に関するベキ指数』が合わない と、なっていて  [仮定] 証明したい事と逆になっている(『√2 が無理数』に対して、『√2 が有理数』を仮定)  [目標] 矛盾を導く という、背理法のフォーマットに沿っていると思えるからです。 あと、m,n は 非負整数 とは書いていませんが、 「2に関するベキ指数」を実数や分数について考えるのは変な感じがしたからです。 非負 にしたのは、「(0も含め)」とあったからです。 [疑問 2] これは前から思っていた事なのですが、 そもそも「ある数が無理数である事」を直接証明できるのでしょうか? (直接証明の意味が分かっていないのに、この言葉を使うのは変なのですが) 有理数は m/n の様な数式としての表現を持っていますが、 無理数は「有理数ではない実数」なので、この様な表現は無いと思っています。 (√x とか特殊な無理数を数式として表現する事を不可能と言っているのではないです) だから、少くとも数式を使ってこれを考えるには、「有理数(m/n)ではない」とするしか無い気がします。 (背理法でなければならないかについては、よく分かりません) と、書きましたが、私は実数に関して知識がほとんどないので、その点がこの考えの弱い部分だと思っています。 (実数も、一般的な数式の表現を持っていないと思っていますが) よろしくお願いします

  • 連続関数

    関数の連続性を証明するところがわからないので質問します。 xが無理数ならば、f(x)=0とし、xが有理数で既約分数p/q(ただしq>0)のかたちに書けるときは、f(x)=1/qとする。 このように定義された関数fは無理数xで連続、有理数xで非連続である。その証明はやさしい。 xが無理数とし、εを任意の正数とする。1/q≧εすなわちq≦1/εとなる正整数qは有限個しかないから、δ>0を十分に小さく選ぶと開区間(x-δ,x+δ)には、上の条件を満たすqにたいする既約分数p/qは存在しない。したがって任意のy∈(x-δ,x+δ)に対して |f(y)-f(x)|=1/q<εとなる。fはxで連続である。一方、有理点のどんな近傍にも無理点が存在し、そこでfの値は0だから有理点では連続ではない。 自分は具体的な数としてx=√2、ε=0.4とすると、q≦2.5となり、q=1,2。 p/q=1/1,2/1,1/2,3/2などいろいろあげられますが、δ=0.01とすると(√2-0.01,√2+0.01)=(1.404・・・,1.424・・・)にはp/qはふくまれません。 ここからがわからないところなのですが、x±δは無理数に有理数を足したり引いたりした無理数であることがあるので、yが無理数になり、f(y)=0となり|f(y)-f(x)|=1/q<εが成立しないような場合があると思います。自分は本があっているなら、f(x)=0より、 f(y)=1/qになると予想しました。どなたか任意のy∈(x-δ,x+δ)に対して|f(y)-f(x)|=1/q<εとなる。を説明してください。お願いします。

  • 実数の連続性について

    読み物風の数学書にこう書いてありました。 「実数の二つの系列について、 a_1,a_2,a_3,,,,, b_1,b_2,b_3,,,,, において、いかなるnにおいてa_n≦b_nでかつa_nは広義単調増加でb_nは広義単調減少であり、しかも差b_n-a_nがnが大きくなるにつれて限りなく小さくなっていくならばすべてのnにたいしてa_n≦α≦b_nとなるような数αがひとつ、しかもただ一つ存在する。 これは実数全体、あるいは直線が一列にすきまなくつながっている主張する命題にほかならない。これを実数の連続性という」 でもどうしてお腑に落ちないのが、上に書いてある命題がなぜ実数が連続だということ、隙間なく詰まっていることを表しているのかがわかりません。αが存在してなくてすべてのnでずっとa_n≦b_nでも連続性を表していると思うんですが...。 よろしくお願いします。

  • 実数とは?

    教科書を読めば、実数は有理数と無理数を合わせたもの、無理数は実数から有理数を除いたものとかかれており結局実数とは何かということにたいして答えが出ていないような気がします そこで、実数とは何かという問いに対して高校範囲ではどのようなものと考えればよいかを教えていただけませんか?