• 締切済み

実数の連続性について

読み物風の数学書にこう書いてありました。 「実数の二つの系列について、 a_1,a_2,a_3,,,,, b_1,b_2,b_3,,,,, において、いかなるnにおいてa_n≦b_nでかつa_nは広義単調増加でb_nは広義単調減少であり、しかも差b_n-a_nがnが大きくなるにつれて限りなく小さくなっていくならばすべてのnにたいしてa_n≦α≦b_nとなるような数αがひとつ、しかもただ一つ存在する。 これは実数全体、あるいは直線が一列にすきまなくつながっている主張する命題にほかならない。これを実数の連続性という」 でもどうしてお腑に落ちないのが、上に書いてある命題がなぜ実数が連続だということ、隙間なく詰まっていることを表しているのかがわかりません。αが存在してなくてすべてのnでずっとa_n≦b_nでも連続性を表していると思うんですが...。 よろしくお願いします。

みんなの回答

  • kabaokaba
  • ベストアンサー率51% (724/1416)
回答No.1

感覚的な議論をしませう. 例えば,こんなサンプル 3, 3.1 3.14 3.141 3.1415 .... 4 3.2 3.24 3.142 3.1416 .... さてさて・・・すぐわかると思うけど これは,引用の文のαは円周率πになるようにしています. πは有理数ではありません. つまり,有理数だけだとπの部分がポッカリ穴があくのです. 実数ってのは,有理数から極限を考えてることで隙間を埋めたもので だから「隙間がない」ということで,「連続」っていうわけです. >αが存在してなくてすべてのnでずっとa_n≦b_nでも連続性を表していると思うんですが 実際問題,上で述べたように 「ずっとa_n≦b_n」というのは有理数で実現できますが, これは「つながっていません」. たとえば{x<π,π<x} という集合はπでポッカリ穴があいてますが あなたのいう「ずっとa_n≦b_n」は構成できますよ. ちなみに,引用文の「実数の連続性」ってのは 「区間縮小」という流儀です.ほかにも何種類も同値が定義があるので 一番納得できるものを探すのも理解の助けになります.

関連するQ&A

  • 大学の微分積分学の連続性の問題で困っています

    教えていただきたいのは以下の問題です。 問題: f:[a,b]→ R が c∈[a,b] で連続なための必要十分条件は, [a,b] の中のすべての単調数列 {a(n)}n (単調増加,または単調減少) で c に収束するものに対して, lim f(a(n)) =f(c) が成り立つことであることを示せ n→∞ 背理法を使うらしいのですが… よろしくおねがいします。

  • 実数の濃度(連続体濃度)についての問題の添削をおねがいします。対角線論法をつかってます。

    問: 任意の写像 f:N→R につき、f は全単射でないことを背理法を使わず証明せよ 添削していただきたいのは上の問です 背理法に引っかかっていないのかどうかが自分には分かりません *のように、並べると――等とすることは可算集合であることを仮定することになってしまいませんか? 解答:  開区間(0,1)をとると 全単射 (0,1)→R x |→tan[π(x-1/2)] がつくれるので、(つくれてますか??) |(0,1)| = |R| よって、g:N→(0,1) が 全単射でないことを示せばよい 各実数 g(n) を10進法によって無限小数に展開して (ただし、有限小数も無限小数で表す) g(n) = 0.a(n1)a(n2)a(n3)… と表すとする ( a(ni)は0から9までの整数 ) 全て並べると……* g(1) = a(11)a(12)a(13)… g(2) = a(21)a(22)a(23)… g(3) = a(31)a(32)a(33)… … ここで a(11)≠b(1), a(22)≠b(2), … となる数列をとれば 0.b(1)b(2)b(3)… という実数は g(1), g(2), … のどれとも異なる 従って g(n) の値域に入らない実数があるため、 gは全射でない  ■ よろしくおねがいします。

  • 「ネイピア数e」の定義を、「実数の連続性公理」に基づいて正確に述べよ。

    「ネイピア数e」の定義を、「実数の連続性公理」に基づいて正確に述べよ。 また、等式lim(n→∞)(1+1/n)^n =Σ(上が∞、下がn=0)(1/n!)が成り立つことを示せ。

  • 連続性の問題

    関数f(x)をf:R→Rで一対一対応かつすべての実数において連続性がある関数とする。 またf(x0)=x0(エックスゼロ)となる点が存在し(つまり不動点)、すべてのf(x)において、f(2x-f(x))=xであるとして、 f(x)≡xを示す。という問題なんですが、 まず合同って何を法ってことなんでしょうか?これはミスプリと考えるのがいいのでしょうか?まあいちおうf(x)=xが十分条件なのでそれを示そうと思い、 1)すべてのxで、f(x)=xであれば終わり 2)f(x)=xでないxが存在するとして、その集合をSとする。 a)Sの要素でlim{h→0}a+hがSに含まれていない要素aに注目する。f(a)≠aであるため、f(a)=a+r (r    は0以外の実数)とおける。ここで、数列Xn=a+(1/2)^nを考える。lim{n→∞} Xn→aであるが、    lim{n→∞} f(Xn)→f(a)とはならないので、連続性がないという矛盾が生じるため、条件をみたす   aは存在しない。   b)Sの要素でlim{h→0}a+hがSに含まれていない要素aがないばあいSの要素でlim{h→0}a-hがSに  含まれていない要素aを考えて、数列Xn=a-(1/2)^nを考える。あとはaと同じ a),b)よりf(x)≠xをみたす実数xは、存在しない。よってすべてのxにおいてf(x)=x と考えたのですが、f(2x-f(x))=xを使ってないですし、解説にはデルタイプシロン論法を使った解法が載っているのですが、この考え方は間違っていますか? 

  • 関数の連続性

    社会人になってまた数学の勉強始めたんですが、いきなり躓いてしまいました。どなたか助けてください。「無限と連続」の数学 という本を現在やっています。 関数 y=f(x) が x=a で連続であるための必要十分条件は a に収束する任意の数列 a[n] について、数列 { f(a[n]) } が f(a) に収束することである この定理の証明なのですが、 x=a で連続である時 { f(a[n]) } が f(a) に収束することは示せたのですが、逆に { f(a[n]) } が f(a) に収束するとき x=a で連続であるというのが示せません。というか成り立たない気がするのですが… 以下、私の考え↓ f(x)を次のように定義します x=a[n] のとき a[n] x=a のとき a x=/=a かつ x=/=a[n]のとき a+3 この関数の場合 { f(a[n]) }は f(a) に収束するが、x=aが連続でないという命題が示せてしまう 任意のδ>0 s.t. 存在するx∈R |x-a|<δかつ|f(x)-f(a)|>=2 を示す どのようなδをとっても、開区間(a-δ,a+δ)のなかにはx=/=a かつ x=/=a[n] を満たす点が存在しいてしまうのでf(x)はそのxの値においてa+3の値をとり、|f(x)-f(a)|>=2をみたすので上記の命題は真になる 以上が私の考えです。ただ、ちょっと不安に思う点があります。 wikipediaの関数の連続性について書かれている記事だと(http://ja.wikipedia.org/wiki/%E3%82%A4%E3%83%97%E3%82%B7%E3%83%AD%E3%83%B3-%E3%83%87%E3%83%AB%E3%82%BF%E8%AB%96%E6%B3%95) s.t.のすぐ後に「任意のx∈R」とあります。だから連続の命題の否定は 存在するε>0 任意のδ>0 s.t. 存在するx∈R |x-a|<δかつ |f(x)-f(a)|>=ε になるのではないかと思うのですが、私の取り組んでいる本には「存在するx∈R」のような表記がありません。 私の考えはどこで間違っているのでしょうか。

  • 数列の証明

    大学の課題で出された数列の証明問題です。 レベルは恐らく高校くらいだと思います。 数列が苦手で、どうしてもわからないので質問します。 正の実数a、b(a>b)に対して、数列{a(n)}{b(n)}を a(0)=a、 b(0)=b a(n+1)=(a(n)+b(n))/2、 b(n+1)=√a(n)b(n) (n≧0) で定義されるものとする。この時、 1、{a(n)}が単調減少であること、{b(n)}が単調増大であることを示せ。 2、{a(n)}が単調減少かつa(n)≧b、{b(n)}が単調増大かつb(n)≦aより、{a(n)}および{b(n)}は収束する。この時、{a(n)}の極限値と{b(n)}の極限値が一致することを示せ。 解答・解説できる方、よろしくお願いいたします。

  • 微分積分概論 実数の連続性公理を用いる問題です。

    今日の17時までに提出のレポートの問題なのですが、 この問題だけ解けません。。。どなたか、どうか助けて下さい。 数列{a_n}n∈N,{b_n}n∈Nが lim[n→∞]a_n=a,lim[n→∞]b_n=bをみたせば、 lim[n→∞](a_1b_n+a_2・b_n-1+…+a_n・b_1)/n=ab を満たすことを示せ(ε-N 論法をもちいることもある)。 ヒント:a=の場合に帰着できることをまず示すこと、 また収束列が有限界であることも活用すること。 どうかどうかよろしくお願いします。。。

  • 連続6項の漸化式

    P(n+6)={P(n+5)+P(n+4)+P(n+3)+P(n+2)+P(n+1)+P(n)}/6 という連続する6項の漸化式の解き方がわかりません。 次のような連続2項の漸化式なら P(n+2)=a*P(n+1)+b*P(n) x^2=ax+b の解をα、βとして P(n+2)-αP(n+1)=β{P(n+1)-αP(n)} として、P(n+1)-P(n)=A(n)とでも置いて A(n+1)=βA(n) として解くことができます。 連続6項の時も同じようにxの6次方程式を解いて 計算することができるのでしょうか? よろしくお願いします。

  • 連続単射

    いかにも大学教養レベルの位相の問題なんですが、少し混乱してしまっています。どなたかご教示いただけたらと思います。 R^n→R^mへの連続単射fがあったとします。疑問点は三つです。 (i)m≧nか?像f(R^n)に制限すれば連続全単射になります。したがって局所コンパクトからハウスドルフへの連続全単射が存在することになって、局所同相ですが、m<nならそれは位相的にあり得ないように思います。この論証は正しいですか。 (ii)上のことが正しいとして、m≧nを仮定します。一般にfは閉写像ではないと思います。たとえばm=n=1ならf(x)=e^xとおけば、閉集合Rを開集合(0,∞)にうつすからです。一般のm,nではこれも少し自信がありません。閉写像にならない反例は常にあげられるでしょうか。 (iii)またm>nなら単純な埋め込みf(x)→(x,0)(残りの成分を0とおく)、を考えれば、開写像でないのは明らかですが、ではn=mのときはどうか。これがいちばん知りたいことですが、たとえばn=m=1のとき、R上の連続単射を考えていることになって、fは狭義単調。したがって逆もまたそうであって、像に制限すれば同相です。特にR上の単調関数は開区間を開区間にうつします。問題はn=m>1のときで、これもやはり開写像になるのでしょうか。局所同相がきちんと言えると示せなくもないような気がするのですが、困っています。

  • 集合と論理

    nを自然数とし、xを実数とする。 命題「-n≦x≦2nならばxの二乗-6x-16≦0」を考える。 この命題が真となる自然数nは、全部で??個存在する。 また、この命題の逆が真になるためのnの条件は、n≧??である。 申し訳ないですが、分かりやすい解説をお願いします。