• ベストアンサー

特殊関数の応用について

ラプラス方程式の一般解をルジャンドル関数を用いて表現したり、 球座標系におけるヘルムホルツ波動方程式の解をベッセル関数を応用した球ベッセル関数によって表現すると、どのようなメリットがあるのですか。

  • NRTHDK
  • お礼率60% (198/327)

質問者が選んだベストアンサー

  • ベストアンサー
  • leo-ultra
  • ベストアンサー率45% (228/501)
回答No.1

だから、ラプラス方程式や波動方程式の一般解が得られるというすばらしい利点があるでしょう。 あとは境界条件やら初期条件で係数を決めれば、解が得られる。

NRTHDK
質問者

お礼

そう言われれば、解を表現している時点で十分メリットがありますね。もっと何か深いものがあるような気がしていました。回答ありがとうございました。

関連するQ&A

  • ベッセルの微分方程式

    テキストによると、円筒座標系での電磁場のマクスウェル方程式を磁場に関して解いて得られる方程式が f’’+1/x*f’+k^2*f=0 解はベッセル関数 AJ0(kx)+BY0(kx) A,Bは定数 しかしこの方程式は一般的なベッセルの微分方程式と少し違います。 x^2f’’+xf’+x^2f=0 x^2で割り算してるのはともかく、係数kの分だけ違うのです。これでもベッセルの微分方程式であり解はベッセル関数であると言えるのでしょうか?

  • ベッセル関数

    円筒座標系での電磁場のマクスウェル方程式を磁場に関して解いて得られる解が複素数を引数とする0次のベッセル関数 AJ0(kr)、kが複素数、Aは実係数、rは実変数 で得られるのですが 引数を実数に変換する方法がわかりません。 純虚数の引数であれば実数の引数の変形ベッセル関数に変換でき、 実数の引数であれば手持ちの本にベッセル関数の値が載っているのですが 複素数の引数の場合の処理方法がわからなくて困っています。 よろしくお願いします。

  • 特殊関数の教科書

    特殊関数の教科書 現在「工学における特殊関数 : 時弘哲治」という本を読み進めており、ほぼ読み終わった状態です。 さらに勉強を進めるにおいてお勧めの本はありますでしょうか? とくに式変形の部分が弱いので、演習的なものがあればと思います。 ベッセル関数、ルジャンドル関数、ガンマ関数、ベータ関数あたりについて応用できるようになりたいと考えています。 上とは別に岩波の公式集はI,II,IIIを持っています。 よろしくお願いいたします。

  • 受験の二次関数の工学的応用

    「xについての二次方程式x^2+(a-1)x-a^2+2=0の一つの解が-2と0の間にあり、他の解が0と1の間にあるような定数aの値の範囲を求めよ」 などの、入試にでてくる二次関数の問題は、工学的にどんな応用がありますか? できるだけ詳しく、「こういう式の使い方をすることが工学ではあるから」といったように、具体的に詳しく数式をまじえて高校生でも分かるように教えて下さい。できるだけ、「こういう使い方をするから、二次関数の勉強を剃る必要があるのか」と納得できるように教えて下さい。

  • 流体力学の問題で…

    非圧縮性流体の中を球(半径R)が速度V(ベクトル)で移動しているとき流体の流れはどうなるのかという問題で、ポテンシャル流だとしてそのポテンシャルφはラプラス方程式(球座標)を満足し、rとVの関数になり、無限遠で0になるという条件を満足しなければならないんですが、参考書では(ランダウさんの流体力学1、非圧縮性流体の章)φはCv・grad(1/r)とおいてるんです。ラプラス方程式の解だからφを1/r^a(aは自然数)とするならわかるんですが。grad(1/r)はなぜなんでしょう?

  • 球座標と海洋

    直交曲線座標として、極座標(平面2次元)、円筒座標、球座標というものがあります。地球上の海の現象を表現する上では球座標を用いると思いますが、球座標は地球の中心から表面まで全部をカバーします。海は地球という球体の表面の薄い膜のようなものなので、球座標のさらに近似版で表現してもよいだろうと思います。地球の半径は6300キロぐらいだと思いますが、海は最大でも10キロ、平均だと4キロぐらいなので、球座標の簡単化されたものになると思います。 すなわち、海を考える上での球座標の近似方程式を知りたいのですが。球面上の薄膜なので2次元でもいいです。球座標は3次元です。球座標での運動方程式は本に載っているのでそれをもとに近似してもいいですが、やはりオーソライズされたものを参照したいと思います。 よろしくお願いします。

  • 平面波exp(-jx)をベッセル関数を用いてあらわすと・・・

    円筒波動関数について勉強しています。 今、平面波exp(-jx)を円筒座標系で表そうとしているのですが、その変換式が Σa*Jn(ρ)*exp(jnΦ) (Σはn=-∞~n=∞まで)と表されています。 aは定数、Jn(ρ)はn次の第一種ベッセル関数、ρは円筒座標系の原点から外に伸びていく変数、Φは円筒座標系のxy面上の角度 この式について、わからないことがあります。 なぜこの式がx方向に進む平面波を表すのでしょうか?定性的なことが理解できません。 しかも第一種ベッセル関数は進行波でないのに進行波をあらわしている。 このこともさらに混乱を深めています。 どのように理解すればよいのでしょうか? あまりベッセル関数に関する知識がないのでできれば優しくおねがしします。 勉強している本はR.F.Harringtonのtime-harmonic electromagnetic fields です。

  • ベッセル関数と環状の膜の振動のモード

    ベッセル関数を調べています。 検索するとウィキペディアに説明文がありました。 その中の「応用」のところに 「環状の膜の振動のモード」と書かれてありました。 この「環状の膜の振動のモード」をベッセル関数で表すと どのような表現になりますでしょうか。 書籍、またはホームページを教えていただけたら助かります。 よろしくお願いします。

  • 波動関数

    Dirac方程式はspin1/2粒子の相対論的な波動方程式で、 その解の二乗(みたいなもの)は粒子の存在確率を表しますが、 たとえば、Klein-Gordon方程式の解は何を表すのでしょうか? 私の印象では、解の絶対値の二乗が存在確率を表すような方程式は、 フェルミオン場を表す方程式(シュレーディンガーまたはディラック)しかないような気がするのですが、 一般のボゾンの存在確率を求めようと思ったら、 どうすればよいのでしょうか?

  • 球殻間の空間の静電位におけるLaplace方程式

    真空中に半径がaおよびbの2同心導体球殻からなるコンデンサーがある。 それぞれの球殻には総量+Q[C]、-Q[C]の電荷が一様に分布している. 球殻間の空間に電荷はないから、球殻間の空間の静電位はLaplace方程式 を充たしている. [1]このような球対称の電荷分布を持つ問題では同心球殻の中心を原点とする 極座標(球座標)系(r,θ,φ)を使ったほうが便利である.Laplace 方程式の球座標系における表式を書け. [2]電位V(r,θ,φ)はγのみの関数であることが分かる.従ってVをθお よびφで微分したものは零になる.このときのLaplace方程式を書け. [3][2]の方程式を解き,V(r)の関数形を求めよ. 未定定数はそのまま 残すこと. [4]V(r)の勾配に(-1)を掛けて位置 r=aにおける静電場を求めよ. 以上の問題について回答を宜しくお願いします.贅沢を言えば[1]以外の問題 についてを特にお願いします.