• ベストアンサー

双曲線関数の証明問題

x^2-y^2=1を満たす任意の(x,y)について、(x,y)=(cosht,sinht) または(x,y)=(-cosht,sinht)となるt∈Rが存在することを示せ。 という問題です。解答として不備があるでしょうか。 指摘していただけたらありがたいです。よろしくお願いします。 y=sinhtとなるtを定める。 x^2=y^2+1より、 x^2=1+sinh^2t=cosh^2tより、 x=±cosht よって、、(x,y)=(cosht,sinht) または(x,y)=(-cosht,sinht)となるtが存在する。

質問者が選んだベストアンサー

  • ベストアンサー
  • alice_44
  • ベストアンサー率44% (2109/4759)
回答No.1

> y = sinh t となる t を定める。 sinh が全実数を値域にとるから、 任意の y に対して t を定めることができる。 このことは、書いておかなければいけない。←(*) > x^2 = y^2 + 1 より、 > x^2 = 1 + sinh^2 t = cosh^2 t より、 > x = ±cosh t この式変形で、x^2 = y^2 + 1 となる x は x = cosh t または x = -cosh t しかないことが言えたので、 その x に対して (x, y) = (cosh t, sinh t) または (x, y) = (-cosh t, sinh t) と書ける。 すなわち、題意が示されたことになる。 …という訳で、(*)の部分を補えば完成なのだが、 一見して、解ってんだか解ってないんだかハッキリしない 印象の証明になってしまっているのは、何故だろう? 式変形をヅラヅラ並べるだけでなく、 その式変形から何が言えるのかを 文章でちゃんと書いたほうがよいのだろうと思う。

全文を見る
すると、全ての回答が全文表示されます。

その他の回答 (1)

  • Tacosan
  • ベストアンサー率23% (3656/15482)
回答No.2

最初からダメ. 「y = sinh t となる t を定める」とあるけど, そのような t がなぜ存在するのですか?

全文を見る
すると、全ての回答が全文表示されます。

関連するQ&A

  • 双曲線関数の積分(ハイパボリック)

    √(4x^2-1)の積分を双曲線関数を使って解くことができるらしいのですが、躓いています。1/√(4x^2-1)なら1/2cosh^-1(2x)と簡単に表せるのですが… どなたか教えてくださいませんか?お願いします。 ちなみに cosh(2x)=cosh^2(x)+sinh^2(x)=2cosh^2(x)-1=1+2sinh^2(x) 以上の公式は授業で教わっています。 使えるような気がするのですがどうでしょうか。

  • 双曲線関数の逆関数の導関数の証明をお願いします

    双曲線関数の逆関数の導関数の証明をお願いします 1.(cosh[-1]x)'=1/(√(x^2-1)) (x>1) 2.(sinh[-1]x)'=1/(√(x^2+1)) お願い致します

  • 複素関数cos(z)の微分について

    w=u+iv=cos(z)とおいたときに,wがzの全域でコーシー・リーマン方程式(∂u/∂x=∂v/∂y,∂u/∂y=-∂v/∂x)を満たすことを示し,微分係数を求めよ.(z=x+iy,iは虚数単位) と言う問題です. 解答を見てみると,  cos(z)=cos(x)cosh(y)-isin(x)sinh(y) の加法定理の関係式を使い,  u=cos(x)cosh(y)  v=-sin(x)sinh(y) したがって,  ・∂u/∂x=-sin(x)cosh(y)  ・∂u/∂y=cos(x)sinh(y)・・・I  ・∂v/∂x=-cos(x)sinh(y)  ・∂v/∂y=-sin(x)cosh(y)・・・II よって,コーシー・リーマン方程式を満たしている. となっていました. 疑問なのは,複素関数cos(z)の微分について調べているのに,IとIIでそれぞれcosh(y),sinh(y)の微分をしていることです.  cosh(y)=cos(iy),isinh(y)=sin(iy) なので,これも複素関数の微分となり,ここでは使ってはいけないのではないのでしょうか? ほかの方法があれば教えてください.また,  {cosh(y)}'=sinh(y),{sinh(y)}'=cosh(y) となる理由もよろしくお願いします.

  • 双曲線関数の図形的“意味”

    三角関数 cos(t), sin(t) は、円のパラメータで、単位円の半径を斜辺とする直角三角形を描けば、cos^2(t) + sin^2(t) = 1 の関係式もすぐに読み取れます。cos(x+t), sin(x+t) で、角度 t の回転を表すこともできます。 ここで、双曲関数 cosh(t), sinh(t) は、双曲線のパラメータであることはわかるのですが、図形的に t とは“何”を示しているのでしょうか(三角関数でいうところの回転角にあたるもの)。変換が、座標を漸近線の方向にぎゅーっと引っ張って縮めていることも理解できるのですが、その動きのどこに t が表れてくるのかがわかりません。cosh^2(t) - sinh^2(t) = 1 の 1 も、一般的な三角関数の図解と同様に図示しても、見えてきません。 三角関数と双曲関数とを対比させ、同じように図形的に理解する方法はないでしょうか。Wiki や WolframMathWorld も検索したのですが、ヒントが得られませんでした。 うまく説明できていないかもしれませんので、適宜補足要求をいただければ幸いです。よろしくお願いいたします。

  • 双曲線関数の問題です。

    次の式を簡単にせよ。 (1)arccosh(coshx) (2)sinh(arccoshx) という問題なのですが、(1)の答えはどうして|x|となるのでしょうか? また、(2)はどうして)±√(x^2-1)ではなくて√(x^2-1)となるのでしょうか? 教えてください。よろしくお願いします。

  • 双曲線関数の加法定理

    双曲線関数の加法定理 双曲線関数の加法定理を導出する問題が出ましたが、どこをどうすればいいのかが分かりません。 cosh(x+y)=coshxcoshy-sinhxsinhy と簡単にいかずに cosh(x+y)=coshxcoshy+sinhxcoshx となる理由もわかりませんし… 数学が得意な方はぜひご指導をよろしくお願いします。

  • 双曲線関数のテイラー展開

    2つの双曲線関数のテイラー展開が下のようになることを証明したいのですが、どのように証明すればよいのかわかりません。 よろしければ、どなたか詳しい証明をお願いします。 sinh(x) = Σ[ {1/(2k+1)!} exp(2k+1)] cosh(x) = Σ[ {1/(2k)!} exp(2k)] Σの範囲はk=0~k=∞です。

  • 双曲線関数を含む式の変形についてなのですが、

    双曲線関数を含む式の変形についてなのですが、 ( 1+cosh(x-y)/(sech x * cosh y) )^a を (○×□)^△ のように和を含まない形(積のみ)に式変形できませんか? 近似でもいいので、導出過程も含めて教えてください。 よろしくお願いします。

  • 双曲線関数を含む式の変形について

    双曲線関数を含む式の変形について (1+(cosh(x-y)/(sech x * cosh y)))^a を (○×□)^△ のように和を含まない形(積のみ)に式変形できないでしょうか。 近似でもいいので、導出過程も含めて教えてください。 よろしくお願いします。

  • 双曲線の問題です>_<

    双曲線2x^2-y^2=1と直線x-2y+t=0との共有点をP.Qとするとき、線分PQの中点の軌跡を求めよ。 <教科書の解答> 直線x=2上の点 P(2.b)から双曲線へ引いた接線の接点をQ(x0、y0)R(x1、y1)とすると、 2接線の方程式は、 x0x-2y0y=1、x1x-2y1y=1。 これが点Pを通る事より、 2x0-2by0=1 2x1-2by1=1。 一方、QRの方程式は y-y0=(y0-y1)/(x0-x1) ×(x-x0) (2) ここで(1)より、(y0-y1)/(x0-x1)=1/bであるから、(2)は y-y0=1/b(x-x0) ∴y=(1/b)x-(1/b)x0+y0=(1/b)x-1/2b=(1/b)(x-1/2) となり、定点(1/2,0)を通る。 質問です!(1)の式を作るまではわかったのですけど、”一方QRの方程式は~”っていう部分の式が どのようにして出来たのか解りません>_< (2)の式のことです。 (2)の式を見ると、y-y0=(y0-y1)/(x0-x1)×(x-x0)となってるので、 (x-x0)がy0-y1/x0-x1に掛かっているので、もともと左辺にあったもの?と考えたら、 (y-y0)/(x-x0)=(y0-y1)/(x0-x1)という風に式を変形してみて考えても、 元々どのような式から生まれてきたのか解りません! あと、二つ目の質問は、”ここで(1)より~(y0-y1)/(x0-x1) =1/bという部分です。 (1)をどのようにしたら、このようになるのですか??>_<????? 誰か教えてください よろしくお願いします>_<