• ベストアンサー

積分についてです

1.曲線C:r=f(θ) α≦θ≦β に対して1/2∫[α→β]f(θ)^2dθ 2. 領域D上の関数z=f(x、y)に対して、∬D√{fx(x,y)^2+fy(x,y)^2+1}dxdy これらの積分はそれぞれどのような値をあたえるのか教えてください。

質問者が選んだベストアンサー

  • ベストアンサー
  • info22_
  • ベストアンサー率67% (2650/3922)
回答No.1

1 極座標の関数r=f(θ)の原点を中心とした角度αの動径→βの動径とr=f(θ)の曲線で囲まれる領域の面積を与えます。 2 領域Dの上部の曲面z=f(x,y)の表面積を与えます。

aerts_2009
質問者

お礼

たすかりました! ありがとうございます

関連するQ&A

  • 積分の問題です

    積分領域D:0≦x≦a,0≦y≦a f(x,y)=f(y,x)のとき ∬Df(x,y)dxdy=2∬D_1f(x,y)dxdyを示せ この式は偶関数なので成り立つのだと思いますが その使い方考え方がわからないです!! 教えてください!!

  • 定積分の問題

    [1]変数変換を用いて、次の重積分を求めよ。 ∬D √(a^2-x^2-y^2)dxdy , D={(x,y);x^2+y^2≦ax} 半径=aの球を考える。 x^2+y^2+z^2=a^2であり。 z=√(a^2-x^2-y^2)となり、被積分関数は上半球となる。 一方、積分領域は D={(x,y);x^2+y^2≦x} ={(x,y);(x-a/2)^2+y^2≦(a/2)^2} となり。 中心点(a/2、0)で半径a/2の低円の円柱が切り取る 体積をもとめることになります。 ・積分領域「-π/2、0」の場合 r=acosθ x=rcosθ y=-rsinθ 関数行列式|D|=-rとなります。 つまり dxdyーーーーーー>-rdθdr・・・・・(3) V=∫[-π/2、0]∫[0,acosθ](- r)√(a^2-r^2) dr dθ =∫[-π/2、0]dθ∫[ 「(1/3){(a^2-r^2)^3/2}」 [r=0,acosθ] =a^3/3∫[-π/2、0](sinθ^3-1)dθ =a^3/3[(ーθーcosθ+(1/3)cosθ^3)[θ=-π/2、0] =(a^3/3)(ーπ/2ー2/3)・・・・・(4) となり、正解 (a^3/3)(π/2ー2/3)になりません。 どこが間違いでしょうか?

  • 微分積分について

    D⊂R^2:面積確定な有界閉領域f:D→R:連続関数の時、┃∬D f(x,y)dxdy┃≦∬D┃f(x,y)┃dxdyになる証明の解き方を教えてください

  • 複素積分(コーシーの積分定理)について質問です

    zを複素数としする。コーシーの積分定理によれば「関数f(z)が領域Dで正則であるとして、領域D内の任意の閉曲線Cの内部が領域Dに含まれる場合、閉曲線Cに沿った関数f(z)の周回積分は0になる。」が成り立つと思います。 そこで次の問題を考えました。(zは複素数変数、aは実数の定数、iは虚数単位とする) 「原点を中心とする半径aの円を閉曲線Cとする。閉曲線Cに沿った、関数f(z)=1/(z-ai)の周回積分Iをを求める。」 閉曲線Cの内部で関数f(z)は正則だけれども、閉曲線Cは関数f(z)が正則でないz=aiの点を含んでいるのでコーシーの積分定理は利用できない。…(1) そこで、次のように積分を行うことにしました。閉曲線Cを複素数で表して、C:z=a*exp(iθ) (0≦θ≦2π) dz/dθ=ai*exp(iθ) よってI =∫f(z)dz =∫{ai*exp(iθ)/(a*exp(iθ)-ai)}dθ (積分範囲は0≦θ≦2π) ここで、[Ln(a*exp(iθ)-ai)](0≦θ≦2π)=0…(2) そこで質問です。 (1)は正しく、閉曲線の外周上に被積分関数が正則で無い部分があるなら、コーシーの積分定理は成立しないのでしょうか? (2)ln(z)は無限多価関数なので、どの複素関数の不定積分でもないと思ったので、Ln(z)を不定積分として用いたのですが、これは大丈夫なのでしょうか? ご回答よろしくお願いします。

  • もうひとつ重積分です;;

    2平面 z=0 z=2xの間にある円柱面 x^2 + y^2 = a^2 の曲面積をもとめろという問題で、自分は ―――――――――――――――――――――――――――――――――― f(x,y)=z=2x fx(x,y)=2 fy(x,y)=0 s=∬ (1+ (fx(x,y))^2 + (fy(x,y))^2 )^1/2 dxdy  =∬(1+4+0)^1/2 dxdy  =・・・・ ―――――――――――――――――――――――――――――――――― とどうしても計算してしまいます;; 絶対違うのはわかるのですがどうやって解けばよいか出だしからつまずいています。 (これも教科書の問題なのですが、略解なのでやり方がまったくかいてませんでした。参考書もあさったのですが、同じような問題がなかったです) 図は描いてみて、大体どこの面積を求めればよいかというのは分かるのですが、肝心の「それをどうやって計算立てるか」というのが浮かんでこないんです。 分かりやすく教えてくれるとうれしいですm(_ _)m

  • 定積分の問題(2)

    [1]変数変換を用いて、次の重積分を求めよ。 ∬D √(a^2-x^2-y^2)dxdy , D={(x,y);x^2+y^2≦ax} 半径=aの球を考える。 x^2+y^2+z^2=a^2であり。 z=√(a^2-x^2-y^2)となり、被積分関数は上半球となる。 一方、積分領域は D={(x,y);x^2+y^2≦x} ={(x,y);(x-a/2)^2+y^2≦(a/2)^2} となり。 中心点(a/2、0)で半径a/2の低円の円柱が切り取る 体積をもとめることになります。 ・積分領域「-π/2、0」の場合 r=acosθ x=rcosθ y=rsinθ ヤコビヤン|J|=rとなります。 つまり dxdyーーー>rdθdr・・・・・(3) V=∫[-π/2、0]∫[0,acosθ]( r)√(a^2-r^2) dr dθ =∫[-π/2、0]dθ 「(-1/3){(a^2-r^2)^3/2}」 [r=0,acosθ] =a^3/3∫[-π/2、0](1-sinθ^3)dθ =a^3/3[(θ+cosθ-(1/3)cosθ^3)[θ=-π/2、0] =(a^3/3)(π/2+2/3)・・・・・(4) となり、正解 (a^3/3)(π/2ー2/3)になりません。 どこが間違いでしょうか

  • 積分の問題

    以下の二問についてどなたかご教授お願いします。 積分領域Dを{(x,y) | 0≦x≦1, 0≦y≦x}とし f(x,y)= y^2*e^(- x^2) とするとき、 問題1 ∫D f(x,y)dxdy を求めよ。 問題2 また曲線 y=x^2上の f(x,y)の最大値と最小値を求めよ。 問題1についてはただ単に重積分の計算をして解けばよいのでしょうか。結果として(1-2/e)/6 という値が出ましたが、どうも自信がありません。 また問題2については、方針もわからない状態です。 曲線上という事なのでf(x,y)の y にx^2を代入し、 計算すればよいのでしょうか? 計算量が多くご面倒かと思いますが、最終的な値を算出していただければありがたいです。

  • 線積分

    以下の線積分なのですが、どのように積分すればいいのか分かりません。 どなたか、解答もしくは方針だけでも教えてください。 F=-(GmM)/(|r|^3)・r Fとrはベクトル が与えられている。 (1) ∫[C_1]F・dr (2)∫[C_2]F・dr ただし、各積分領域は C_1については、 点(x_0,y_0,z_0)から点(x_1,y_1,z_1)への線積分で x=x_0+(x_1-x_0)t y=y_0+(y_1-y_0)t z=z_0+(z_1-z_0)t (0<=t<=1) である。 C_2については、円筒座標系で x=pcosφ y=psinφ z=h (0<=φ<=Φ) です。 わかりづらくてすみません。

  • 積分の最小値の問題がわかりません

    R×R上の連続な関数f(x,y)>=0, ∬ f dxdy = 1, ∬(x^2+y^2) f dxdy < ∞(ただし、∬はx, yについて[-∞,∞]での積分を意味するものとする)。このとき、 (1) 以下のコーシー・シュワルツの不等式を示せ(これはできました)。 {∬xy f dxdy}^2 <= ∬x^2 f dxdy × ∬y^2 f dxdy (2) ∬{y-g(x)}^2 f dxdy を最小にするxの関数 g(x) を求めよ。 おそらく(1)の不等式を使うのでしょうが、どうすればg(x)が一意に定まるまでに変形できるのかがわかりません。 よろしくお願いします。

  • 積分について

    A(有界集合)を含む長方形Rの取り方によらずに積分可能であることが決まり、また積分値も取り方によらずに一定である。 つまり、 R⊃Aでf(x,y)が積分可能とするとき、ほかの長方形R_1⊃Aをとるとき、R_1でのf(x,y)の積分可能性と∬_(R_1)f(x,y)dxdy=∬_(R)f(x,y)dxdy となることを示したいのですが、わかりません。 回答よろしくお願いします。