• 締切済み

微分積分について

D⊂R^2:面積確定な有界閉領域f:D→R:連続関数の時、┃∬D f(x,y)dxdy┃≦∬D┃f(x,y)┃dxdyになる証明の解き方を教えてください

みんなの回答

  • Tacosan
  • ベストアンサー率23% (3656/15482)
回答No.1

f(x, y) ≦ |f(x, y)|

関連するQ&A

  • 積分についてです

    1.曲線C:r=f(θ) α≦θ≦β に対して1/2∫[α→β]f(θ)^2dθ 2. 領域D上の関数z=f(x、y)に対して、∬D√{fx(x,y)^2+fy(x,y)^2+1}dxdy これらの積分はそれぞれどのような値をあたえるのか教えてください。

  • 積分の問題です

    積分領域D:0≦x≦a,0≦y≦a f(x,y)=f(y,x)のとき ∬Df(x,y)dxdy=2∬D_1f(x,y)dxdyを示せ この式は偶関数なので成り立つのだと思いますが その使い方考え方がわからないです!! 教えてください!!

  • 積分の最小値の問題がわかりません

    R×R上の連続な関数f(x,y)>=0, ∬ f dxdy = 1, ∬(x^2+y^2) f dxdy < ∞(ただし、∬はx, yについて[-∞,∞]での積分を意味するものとする)。このとき、 (1) 以下のコーシー・シュワルツの不等式を示せ(これはできました)。 {∬xy f dxdy}^2 <= ∬x^2 f dxdy × ∬y^2 f dxdy (2) ∬{y-g(x)}^2 f dxdy を最小にするxの関数 g(x) を求めよ。 おそらく(1)の不等式を使うのでしょうが、どうすればg(x)が一意に定まるまでに変形できるのかがわかりません。 よろしくお願いします。

  • 積分について

    A(有界集合)を含む長方形Rの取り方によらずに積分可能であることが決まり、また積分値も取り方によらずに一定である。 つまり、 R⊃Aでf(x,y)が積分可能とするとき、ほかの長方形R_1⊃Aをとるとき、R_1でのf(x,y)の積分可能性と∬_(R_1)f(x,y)dxdy=∬_(R)f(x,y)dxdy となることを示したいのですが、わかりません。 回答よろしくお願いします。

  • 微分積分

    次の重積分の値を求めよ(広義重積分のものもある) (1)∬√(xy-x^2)dxdy D={(x,y)∈R^2|0 ≤ x ≤ 1, x ≤ y ≤ 10x} (2)∬{1/√(1-x^2-y^2)}dxdy D={(x,y)∈R^2|x^2+y^2 < 1, 0 < x, 0 < y} この問題がわかりません おしえてください お願いします

  • 積分

    a が実定数で平面R^2上で定義された関数 f(x, y) =(x^2 + sin^2y)^a ((x, y)≠(0, 0)のとき) 0 ( (x, y) = (0, 0)のとき) で 1) f がR^2 上で連続的微分可能,すなわち,f が偏微分可能でかつf の 偏導関数が連続であるためのa に関する必要十分条件を求める問題 2) 積分∫_(0<x^2+y^2≤1)f(x, y)dxdy が収束するためのa に関する必要十分条件を求める問題 がわかりません。 どなたかお願いします。

  • 2重積分の定義について

    分からなくって困っています。 分かる方がいらっしゃいましたら、是非お願いいたします☆ 1.長方形D:=[a,b]×[c,d]で有界な関数f(x,y)が与えら れている時、fがDで「2重積分可能である」ことの定義 をあたえよ。また、Dが滑らかな曲線で囲まれた図形の場 合の定義も与えよ。   …この問いで滑らかな曲線の場合の定義が分かりませ   ん(^^; 2.長方形D:=[a,b]×[c,d]で連続な関数f(x,y)は2重積 分可能であることを証明せよ よろしくお願いいたします。

  • 累次積分について

    ~定理~ f(x、y)が 閉領域R={(x,y)|a≦x≦b,g(x)≦y≦h(x)} で連続ならば、           b  h(x) ∬f(x,y)dxdy =∫ {∫f(x,y)dy}dx R         a  g(x)     という定理について質問なのですが、 これは閉領域Rのなかでf(x,y)≦0となる場合でも成り立ちますか? また閉領域Rのなかで、f(x,y)がある範囲で正、他の範囲で負 となるような場合でも成り立つのでしょうか?

  • 重積分

    次の重積分について、問題を解いてください。 R>0として、領域D,D_+,D_- が D = {(x,y)|0≦x≦R,0≦y≦R} D_+ = {(x,y)|x^2+y^2≦2R^2,x≧0,y≧0} D_- = {(x,y)|x^2+y^2≦R^2,x≧0,y≧0} で 与えられるとき、以下の問いに答えよ。ただし、aは正の定数である。 (1) 2重積分∮∮D e^{-a(x^2+y^2)}dxdy,∮∮D_+ e^{-a(x^2+y^2)}dxdy,∮∮D_- e^{-a(x^2+y^2)}dxdyの大小関係を示しなさい。 (2) 2重積分 ,∮∮D_- e^{-a(x^2+y^2)}dxdyを計算しなさい。 (3) (2)の結果をR→∞としたときの極限値を求めよ。 (4) 定積分∮(0→∞) e^(-ax^2) dx = (1/2)√(π/a) を証明せよ。 途中式もお願いします。

  • 微分積分学

    微分積分学 関数f:A→Rがa∈Aで連続であるとは、aに収束するA内の任意の数列{Xn}に対し Lim[n→∞]f(Xn)=f(a) となることである。 ε-δ論法を用いて ∀∈>0、∃δ>0、 |x-a|<δ、x∈A⇒|f(x)-f(a)|<ε さらに任意のa∈Aで連続のときfはA上の連続関数である。 のε-δ論法の証明が分かりません(;∀;) どうやって証明すればいいんでしょうか…。