• 締切済み

線積分における完全微分性および積分路に対する独立性について

cを経路とすると、 ∫c {F1(x,y)dx+F2(x,y)dy} について、∂F1/∂y=∂F2/∂x が成り立つとき、F1(x,y)dx+F2(x,y)dyは完全微分であると言い、 ∫c {F1(x,y)dx+F2(x,y)dy}は、経路に関係なく始点と終点 だけで決まるというようなことを習いました。 ここで、 ∫c {F1(x)dx+F2(y)dy} は、∂F1/∂y=∂F2/∂xが成り立つので始点と終点を指定して 積分すれば良いということになるのですが、 ∫c {F1(x)dx+F2(y)dy}は、始点と終点を指定して 積分すれば良いということを「直接」偏微分で考えずに、 もっと初等的に、(線)積分の意味などから 考える方法はありませんか? 自分で考えてみたところ、「∫c F1(x)dx では、 F1はxの関数なので、xの値にのみ依存し、例え経路c上の 座標(x,y)が(5,9)であろうと(5,3)であろうとxの値は5になるので、 ∫c F1(x)dxは経路に依存せず、始点と終点を定めて計算すれば 良い」という説明になるのかな?と思いました。 たぶんこれは、∂F1/∂y=∂F2/∂xが成り立つことを間接的に説明 しているように思えるのですが… この説明はこの説明で良いのでしょうか? 他の説明の仕方があれば教えてください。お願いします。

noname#113213
noname#113213

みんなの回答

  • arrysthmia
  • ベストアンサー率38% (442/1154)
回答No.1

>「∫c F1(x)dx では、F1はxの関数なので、xの値にのみ依存し、 ∫c { F1(x,y)dx + F2(x,y)dy } が、∫c { F1(x)dx + F2(y)dy } に すり替わってしまったようです。 それでは、∂F1/∂y = ∂F2/∂x だけでなく、 ∂F1/∂y = ∂F2/∂x = 0 を仮定したことになります。 ∂F1/∂y ≠ 0 の場合が証明できていません。 証明のヒント: ストークスの定理を2次元で使う。 http://www.k2.dion.ne.jp/~yohane/000suugaku51.htm

noname#113213
質問者

補足

>>∫c { F1(x,y)dx + F2(x,y)dy } が、∫c { F1(x)dx + F2(y)dy } に >>すり替わってしまったようです。 すり替わったというか、僕は、一般的な ∫c { F1(x,y)dx + F2(x,y)dy } ではなく、その特殊な場合である∫c { F1(x)dx + F2(y)dy }の場合は どうなるのだろうか?と思って考えているのですが…

関連するQ&A

  • 微分積分について

    微分積分初心者です。 dy/dx=5という微分方程式があって、これの両辺をxで積分すると ∫dy/dx・dx=∫5dx y=5x + C(Cは積分定数)というのはわかるのですが、 dxを右辺に持って行って、 dy=5dxとして両辺を積分する時は、左辺をyで積分、右辺をxで 積分ということになるのでしょうか? こういうことは可能なのでしょうか? また一階微分の時は右辺にdxを持っていくことができますが、 二階微分以上ではできないのはなぜでしょうか? よろしくお願い致します。

  • 線積分

    xy面上のスカラー場f(x,y)=xyに対し、線積分∫[C]drfを求めよ。 ただし、積分経路Cは(0,0)→(1,1)を結ぶ経路である。 C:x = t, y = t  (t=0~1)  dx/dt = 1  dy/dt = 1 ∴ ds = {√((dx/dt)^2 + (dy/dt)^2)}・dt = √(2)dt ここからどうすればよいのですか? 詳しい解説お願いします。

  • 微分方程式  積分方程式 について

    微分方程式y'=x+1について、 解は、 dy/dx=x+1 変数分離を行って、 dy=(x+1)dx 両辺を積分すると、 ∫dy=∫(x+1)dx・・・(※) よって、 y=1/2x^2+x+C (※)の部分ですが、これは積分方程式と 言っていいのでしょうか? 積分方程式って、何なんでしょうか? Wikipediaを見たのですが、わかりませんでした・・・ 以上、ご回答よろしくお願い致します。

  • 線積分

    どうしても解き方がわかりせん。どなたか教えていただけませんでしょうか。≪xy平面内の2点(0,0)(a,b)を始点.終点とする直線Γに沿った線積分U(a,b)=-∫Γ(dxf(x)+dyf(y))を計算してポテンシャルU(a,b)を求めよ。f(x)=-3x^2y^2 f(y)=2x^3y f(z)=0≫なんですけど、線積分の意味は理解できたのですが、∫f(x)dxと∫dxf(x)の違いがわからなりません。また線積分の計算方法がわからないので教えてください。できればΓの意味も教えてください。

  • 積分を別の変数で微分するときの解き方

    F(y)=∫(x-y)p(x)dx (※積分範囲は0からy) と定義されるF(y)をyで微分する場合の計算過程について質問させてください。 もし積分範囲に変数yが指定されていなければ, F(y)=∫xp(x)dx - y∫p(x)dx と考えて, yで微分すれば, F’(y)= -∫p(x)dx ・・・式(1) と解けるかと思います。 しかし、積分範囲にyがある場合、積分部分自体もyの変数になっているので、同じように解いてはいけないと私は考えていまして P'(t)=p(t) R'(t)=P(t) とおいて, F(y)をP(t)とR(t)を用いて表現したあとにyで微分して求めました。 結果、式(1)と同じようになりました。 このような場合、積分範囲にyがある場合でも、定数として考えて微分してしまっていいのでしょうか? 質問の意図が分かりづらいかもしれませんが、上手く説明出来ません。 すいませんが、よろしくお願いします。

  • 線積分について

    Cを{x=3-t,y=3,(0≦t≦3)}という線分としたとき、線積分∫c y/(x^2+y^2)dx+(-x)/(x^2+y^2)dyの値を求める問題なのですが、答えは-π/4なのですが自分でやるとどうしてもπ/2になってしまいます。 原因がわからないので解答お願いします

  • 逆関数の微分と全微分の違い

    「y=1+x*c^yで定まる陰関数yについてdy/dxを求めよ」という問題の 解き方で、逆関数の微分と全微分のどちらで解けばよいのか分かりません。 私は、f(x,y)=1+x*c^y-y=0とおき、dy/dx=df(x,y)/dx*1/{df(x,y)/dy}で解き dy/dx=c^y/{x*c^y-1}となったのですが、 全微分の解き方をすると、c^y*dx+{x*c^y-1}*dy=0より dy/dx=-c^y/{x*c^y-1}となり、私が出した答えと符合が逆になってしまいます。 この場合どちらの解き方で解けばよいのでしょうか? 見づらいとは思いますが、どうかよろしくお願いいたします。

  • 偏微分、部分積分

    部分積分の公式として、 ∫f'(x)g(x)dx = f(x)g(x) - ∫f(x)g'(x)dx というのがありますが、このダッシュは偏微分を表しているのでしょうか? 勿論1変数なら偏微分もへったくれもないと思うのですが、今、 ∫∂f(x,y)/∂x g(x,y)dx という積分をしたいと思っているのですが、これを部分積分して、 f(x,y)g(x,y)-∫∂g(x,y)/∂x f(x,y)dx とすることは可能なのでしょうか?

  • 微分と積分の関係 

    微分と積分の関係を説明するときに、定積分を使うのはなぜですか? すなわち、 f(t)の原始関数の一つをF(t)として、 (d/dx)∫[a,x] f(t)dt=(d/dx){F(x)-F(a)}=F'(x)=f(x)  (∫[a,x]は、下端がaで、上端がxです。) のように定積分を使って、微分と積分の関係を説明するのはなぜですか? 不定積分を使うのはだめなのでしょうか? すなわち、 f(x)の原始関数の一つをF(x)として、 (d/dx)∫f(x)dx=(d/dx){F(x)+C}=F'(x)=f(x) というふうにして、微分と積分が逆演算であることを説明するのはだめなのでしょうか? 個人的には、f(t)が出てきてよく分からなくなってしまう定積分の説明よりも、後者の説明の方がいいと思うのですが、どうなのでしょうか? とても困っています。 回答よろしくお願いいたします。

  • 積分計算がわかりません

    微分方程式の問題で (x+y)dy/dx=3x+3y+1 の一般解を求めたいのですが 自分がわかった部分は Y=x+y・・・(1)とおいて 両辺をxで微分して dY/dx=1+dy/dx・・・(2) となるので(1)(2)から dY/dx=(4Y+1)/Yになって Y/(4Y+1)dY=dx で両辺を積分すれば求まると思ったのですが 左辺の積分がうまく出来ません また、ここまでの式変形がすでに間違えているのでしょうか