• 締切済み

ガウス積分って?

ガウス積分がどういう理屈の元に成り立っているか教えてください. 例えば1次元・2次元ガウス積分では,グラフ上でどのようにガウス積分点を配しているのかなどです. ちなみに http://bowie.mech.nagasaki-u.ac.jp/~sai/Master-BFM/bfmtext/node13.html での説明は理解しています. これをη,ξの無次元座標でのグラフ上での説明も加えてもらえればなって思うんですが・・・・ なんでもいいです.この本読めとかでも結構ですのでアドバイスお願いします.

みんなの回答

  • nubou
  • ベストアンサー率22% (116/506)
回答No.1

ガウス積分は立体角の定義に使われるものです 点Oを囲う閉曲面Sがある 点OからS上の点Pまでのベクトルをrとし 点Pでの外向きのSの単位法泉ベクトルをnとしたとき r・n/|r|^3をS上で面積分するとその結果は4・πになる ちなみに点OがSの外にあると前記積分は0になり 点OがS上にあるとき前記積分は2・πになる 2次元は当たり前で役に立たないので気にしないで良い 3次元は球の相似と表面積が4・π・r^2を使えば証明できるし 2次元は相似と円周が2・π・rを使えば証明できる

全文を見る
すると、全ての回答が全文表示されます。

関連するQ&A

  • 円孔のある板を引っ張ったときの円の大きさの影響について

    大学の学生実験で有限要素法を用いて中心に円のある板を引っ張って応力等を計算しています。 下記のサイトの式でもあるように円の大きさが大きくなると、応力(特に円周りの応力)も大きくなると思うのですが(実際私がその実験をしたときも教えてくれていた院生にそういわれましたし)、今の学生実験の学生に教えるに近い立場になっているので、自分でも円の大きさを変えて実際に計算してみましたが、ほとんど値が変わりませんでした。 メッシュ自体も小さくし、引っ張ったときに切れ目などが入らないようにして切っているので、メッシュが問題ではないとは思います。 原因としては、解析するためのソフトのプログラムにミスがある。 または、実際は円の大きさを変えても応力は変わらない。(つまり、私の理解の仕方が間違っている) というような原因しか考えられないのですが、実際のところどのような原因だと思いますか? ちなみに板の大きさは180mm×60mmで円の大きさは5 , 7.5 , 10mmの三種類で計算していて、計算するためのプログラムは10年くらい昔にいた先生が作ったものらしいです。 http://bowie.mech.nagasaki-u.ac.jp/~sai/Fracture/node4.html

  • hammerの公式って?

    ↓のページにhammerの公式を使うってかいてあるのですが, そのhammerの公式って,どういうものなのでしょうか?またどういった本に載っているのでしょうか? ガウス積分と同じようなもので,積分関係の本をあされば載ってるのかと思ったのですが,見当たりませんでした. 見落としているだけなんでしょうか? よろしくお願いします. http://homer.shinshu-u.ac.jp/caesyslab/Basic/For/For3.5.2.html

  • 数値積分の重み関数について

    被積分関数 f(x) をガウスの積分公式を使って数値積分する場合、重み関数を w(x) とすると、 ∫w(x)f(x)dx≒Σaf(xi) となりますが、 これでは、被積分関数は f(x) でなくて w(x)f(x) となってしまうと思います。 なので、本来計算したい ∫f(x)dx の値ではなく、∫w(x)f(x)dx の値となるので、結果が変わってしまうのではないかと思うのですが、あまりにも低レベルのことなのか、この疑問を解消してくれるような説明が本に載っていません。 どなたか教えてくれませんでしょうか。

  • OPEN GLのテクスチャ座標

    色々なサイトを読むとテクスチャ座標にはS,T,Q,Rがあると書いてあるのですが、具体的にS,T,Q,Rがどういう座標なのかよく分からないのですが、教えて頂けますでしょうか。 自分なりに調べて少し参考になったのは以下のサイトなのですが、ここではS,Tの定義については説明されています。 http://marina.sys.wakayama-u.ac.jp/~tokoi/?date=20040917 ここをみるとS,TがテクスチャファイルのX,Y方向なのかなというのは想像できます。 しかし、別のサイトを見ると二次元のテクスチャを使っているのにS,T,Q,Rを全て定義、即ち四次元の座標を定義している理由が理解できないのです。 何故二次元のテクスチャを使うのに四次元のパラメータが必要なのか、Q,Rはどういう座標系なのか、ここのところがどうしても分からないでおります。 お手数ですが、よろしくお願い致します。

  • 積分と微分の関係

    微分や積分の基本的な意味は理解できるのですが、この2つが上手く結びつきません。 例えばある関数f(x)とx軸に囲まれた面積を計算するとき∫(範囲)f(x)dxという式を立てます。 この式の意味はその範囲を細かく細かく誤差が出ないくらい細くきって横dx縦f(x)の長方形を∫sumするということだと説明を受けそれは凄く納得なんですが、いざ計算しようとなると微分したらf(x)になる関数F(x)がでてきますよね? これはなぜなんでしょうか? http://www.ss.u-tokai.ac.jp/~ooya/Misc/Shiryou/Teisekibun.shtml ↑のグラフで見てもF(b)-F(a)=[a,b]の面積となるのがいまいちぴんときません。 大学受験の範囲でできるだけ易しく教えていただけるとありがたいです。よろしくお願いします。

  • Φ'(√y)={e^(-y/2)}/√(2π)

    Φ'(√y)={e^(-y/2)}/√(2π)の解き方を教えて下さい。 まずは添付画像をご覧ください。 f(y) = {e^(-y/2)}/√(2πy) という答えは、本に載っている答えなので間違いないです。 しかし、その計算過程の Φ'(√y)={e^(-y/2)}/√(2π) で躓いています。 実は三日前に以下のようなガウス積分らしき式 ∫[-∞,0] e^{(-u^2)/2} du = √(π/2) の解き方をOKWave(https://okwave.jp/qa/q9858920.html)で教えていただいたのですが、 今回は積分の範囲が∫[-∞,√y]になるので、応用ができません…。 それで Φ'(√y)={e^(-y/2)}/√(2π) と睨めっこしていたんですが、これって u^2のuに√yを代入しただけじゃないかと思って計算したら、 確かに {e^(-y/2)}/√(2π) になりました。 これは偶然でしょうか? Φ'(√y)という風にΦの肩に微分の'(プライム)が付いていますが、 これはどうやって計算しているのでしょうか? 毎回すみません、よろしくお願いします。

  • 確率波動の性質とファインマンの経路積分の矛盾

    確率波動の性質とファインマンの経路積分の矛盾 物理学には多数の矛盾が事実として存在する. その一つがファインマンの経路積分の矛盾だ. そこで質問です.ファインマンの経路積分に矛盾はありますか?ありませんか? ファインマンの経路積分では確率的な波動をその計算の対象にしている.そこになんと2つも確率の常識に矛盾する内容がある.確率に許されない大問題が隠れている.ひとつめの矛盾は波動の振幅に相殺し合う成分があり、ホワイトノイズになり一定の期待値を得るはずの値が広い範囲で0となる、そういう経路があるという. ふたつ目の矛盾は確率の賽をふるうはずのない現象に無限回の確率を振るわせてしまう数式構造をファインマンの経路積分が持っている事である. そこで質問です.ファインマンの経路積分に矛盾はありますか?ありませんか? ひとつ目の矛盾 (期待値の矛盾) ========================================== 正規分布の統計における確率の賽には重ね合せに起きた加算において、加算があっても無くても、たとえ減算だとしてもその期待値には大きな変化が起きず、また正規分布を維持し続けるという性質がある. ところが成分の期待値を並べたグラフの包絡線にひろくゼロとなる期待値があるという. どんな確率分布からも、それらや、それら以外のいろいろな合成を行ったとしても、合成の種類や合成の回数が多くなればなるほど、合成の結果に表れる統計分布について必ず正規分布になるという性質がある.その正規分布の性質を持った波動からフーリエ変換で成分を求めると、ホワイトノイズを得る学理がある. ホワイトノイズの期待値には包絡線にゼロとなる事が無い. これにファインマンの経路積分は矛盾して相殺成分があるという.ファインマンの語る相殺とは包絡線にゼロとなる成分が広く存在するという主張であるから大きな矛盾である. ファインマンの経路積分を説明すると、aの地点からbの地点まで物体や量子が運動するとき、aとbに挟まれた空間に多様な軌道を選ぶ可能性が確率的にあり、その経路についてファインマンの経路積分は経路全体の作用という値の総合計をする. そのファインマンの経路積分はオイラーの公式に基づいた複素指数の関数を積分核とした畳み込み積分を空間の3次元に行う. 光線の屈折や反射ではよく2次元平面に現象の説明を作図するが、作図できるのだから3次元の運動を2次元だけで考える事ができる.このようなときファインマンは空間全体に経路が広がっているが、総合計では屈折や反射の最短時間の経路以外の経路の成分は相殺すると主張している. 結局その主張に沿えば1次元の積分をするだけでファインマンの経路積分の値が求められる. このときのファインマンの経路積分は1次元のオイラーの公式に基づいた複素指数の関数を積分核とした畳み込み積分である. この畳み込み積分に同形な積分がある. フーリエ積分と呼ばれ、ノイズ波動信号をその方法で情報工学や通信工学では信号の評価を行われている. もし被積分信号が正規分布する確率を持っていると、そのフーリエ積分の評価グラフにはホワイトノイズが表れる. ホワイトノイズには重ね合せの信号に性質と振幅に変化が起きない. ホワイトノイズの出現と、重ね合せの結果の性質は証明された学理である. 確率波動なら期待値が相殺しあうスペクトルはファインマンの経路積分に存在しない.ところが確率波動なのにファインマンの経路積分に相殺の成分があるという矛盾がある. 物理学にかくも大きな矛盾がある. ふたつ目の矛盾 (確率事象の矛盾) ========================================== たとえば、光線が反射や屈折をしたとする.屈折は界面におき、反射は鏡面との衝突に起きる.この界面の通過という時点、または鏡面に衝突という瞬間において確率の賽が振られるのは間違いない. 通過や衝突という作用の時点その瞬間には確率の賽が振られても妥当と考える. しかし、作用のない空間で果たして確率の賽は振られているだろうか. そこでレーザー光線を光源と考えてみる. レーザー光線は位相と周波数が揃った量子の重ね合せである. 光子は量子であるからそれぞれの光子の振幅も等しい. コヒーレントであるから、光源の半透過鏡を通り抜けたあと、レーザー光線が直進する空間部ではまったく確率の賽はレーザー光線には振られない. 反射の鏡面や界面の通過の場所だけで、通貨の一瞬に1回だけ確率の賽が振られたはずだ. それ以外の空間で賽は振られず、確率の変化はない. そこでレーザー光線を用いて屈折や反射を実験したとする. するとこの特殊な実験が、レーザー光線でない一般の経路成分の相殺を含んだ屈折や反射に同じ現象であることになる. ファインマンは極限に至る無限回の大数だけ確率の賽がふられたと主張するが、実はその屈折や反射という現象にはただの一度界面の通過の時点や、または衝突反射の時点という一瞬しか確率の賽は振られていない. 極限に至る無限大の確率変化、変動はどんな現象にも存在していない. したがってファインマンの経路積分は真実に大きく矛盾している. 物理学にかくも大きな矛盾がある.

  • 三次元のグラフを書きたいのですが。。。

    エクセルだとそんなに点がとれない上に重いので使用したくないです。 GNUPLOTやOPENGLでプログラムをコンパイルすると同時に三次元のグラフを描けるようにしたいです。 わかりやすく説明された本、サイト、サンプルプログラムなどがあるなら教えていただけないでしょうか?

  • 積分すると1/2とLが消える?

    本の計算では、ある式を積分すると1/2とLが消えてしまっていて、自分の計算と合いません。右辺が0なので両辺に2を掛けてLで割った可能性もあるのですが、1/2が消えるのはまだ許せても、Lが消えるのは納得いきません。(消していいものなのか、もしくは別の理由で消えたのか、判断願います。) 原文を引用します: ※関係式: ∫[0,L] cos (2nπx/L) dx = ∫[0,L] sin (2nπx/L) dx = 0 (式1.17a) (nは正あるいは負の整数) [前略] …さらに、 (1/2) * { da[0](t) }/dt + Σ[n=1,∞] { da[n](t) }/dt * cos(2nπx/L) + Σ[n=1,∞] { db[n](t) }/dt * sin(2nπx/L) = -D * Σ[n=1,∞] {(2nπ/L)^2} * a[n](t) * cos(2nπx/L) - D * Σ[n=1,∞] {(2nπ/L)^2} * b[n](t) * sin(2nπx/L) (式7.6) …の両辺をそのままx=0からx=Lまで積分すると、先の関係式(式1.17a)より、 { da[0](t) }/dt = 0 (式7.7c) が得られる。 ・・・以上、引用終わり。 私の計算だと、(式7.6)の両辺をそのままx=0からx=Lまで積分するので: (1/2) * { da[0](t) }/dt *∫[0,L] 1 dx + Σ[n=1,∞] { da[n](t) }/dt * ∫[0,L] cos(2nπx/L) dx + Σ[n=1,∞] { db[n](t) }/dt * ∫[0,L] sin(2nπx/L) dx = -D * Σ[n=1,∞] {(2nπ/L)^2} * a[n](t) * ∫[0,L] cos(2nπx/L) dx - D * Σ[n=1,∞] {(2nπ/L)^2} * b[n](t) * ∫[0,L] sin(2nπx/L) dx になり、 ∫[0,L] cos (2nπx/L) dx = ∫[0,L] sin (2nπx/L) dx = 0 (式1.17a) により、 ∫[0,L] cos(2nπx/L) dx ∫[0,L] sin(2nπx/L) dx はすべて0になります。 残りを計算すると (1/2) * { da[0](t) }/dt *∫[0,L] 1 dx = 0 (1/2) * { da[0](t) }/dt * [x][0,L] = 0 (1/2) * { da[0](t) }/dt * [L-0] = 0 (1/2) * { da[0](t) }/dt * L = 0 になります。本の答えは { da[0](t) }/dt = 0 なので合いません。 [概略](原文が凄まじく長いので、自分の言葉で書きました…なんとなく分かっていただけたらと思います…足りなかったら補足します) u(x,t) が時刻tにおける座標xでの温度uを表します。 このとき、1次元の熱伝導方程式 { δu(x,t) }/δt = D * { δ^(2) * u(x,t) }/{ δx^(2) } (式7.1) を解くためにフーリエ級数をどう使うのか、というのが今回のテーマです。 最初の時刻(t=0)での温度分布(つまり、初期条件)は u(x,0) = f(x) (式7.2) とします。 例として、長さLの「リング状の」棒での熱伝導を考えます。リング状なので、棒に沿って「ある点」をx=0とすると、 x=x[0] と x=x[0]+L は同じ点に対応するため、「温度uが座標xについて周期Lの周期関数である」という周期的境界条件 u(x,t) = u(x+L,t)(式7.3) が任意の時刻t (>=0)で成り立っている必要があります。 このときには初期温度分布f(x)にも条件が付き、 f(x) = f(x+L)(式7.4) が成り立っていないといけません。すなわち、f(x)も周期Lの周期関数です。 u(x,t)をフーリエ級数展開すると、 u(x,t) = (1/2) * a[0](t) + Σ[n=1,∞] a[n](t) cos (2nπx/L) + Σ[n=1,∞] b[n](t) sin (2nπx/L)(式7.5) になり、この(式7.5)を(式7.1)に代入して項別の偏微分をすると、私の質問に出てくる (1/2) * { da[0](t) }/dt + Σ[n=1,∞] { da[n](t) }/dt * cos(2nπx/L) + Σ[n=1,∞] { db[n](t) }/dt * sin(2nπx/L) = -D * Σ[n=1,∞] {(2nπ/L)^2} * a[n](t) * cos(2nπx/L) - D * Σ[n=1,∞] {(2nπ/L)^2} * b[n](t) * sin(2nπx/L) (式7.6) になります。

  • ガウス積分みたいです。

    ある期待値(または平均値)を計算する中にでてくるんですが、∫[-∞,∞]x・exp(-ax^2)dxの積分ってどうやればいいんですか?部分積分でやると、こんがらがってしまいます。 ガウス積分なんですか? ∫[-∞,∞]x^2・exp(-ax^2)dxの積分は1/2a*(π/a)^(1/2)っていうのは、いろんなサイトや教科書にもでていますが、前者にあげたxの1乗の場合がどうしたらいいかわかりません。ガウス積分に一般式でもあるのでしょうか? 急なお願いになってしまうのですが、お願いします。