• ベストアンサー

1/cos x、1/(cos x)^2の積分について

1/cos xや1/(cos x)^2の不定積分を、「微分の逆計算」とする以外に、導く方法はありませんか? というのも、私の使っている教科書では、1/cos xや1/(cos x)^2の不定積分が「いくつかの関数の不定積分」と称して公式のように書かれています。ふと、それがどのように導かれているのかを知りたくなったんですが、教科書には「微分することで元の関数に成っていることを確認せよ」としか書かれていません。仕方なく微分してみたら確かに元の関数になったんですが、なにかしっくり来ません。 「微分の逆計算」を認めずに、1/cos xや1/(cos x)^2の不定積分を導く方法があれば、是非知りたいです。 よろしくご教授お願いします。

noname#70525
noname#70525

質問者が選んだベストアンサー

  • ベストアンサー
  • nettiw
  • ベストアンサー率46% (60/128)
回答No.2

p2=∫dx[1/(cos x)^2] tanx=T dx*[1/(cos x)^2]=dT dx=dT[(cos x)^2] p2=∫dT[(cos x)^2][1/(cos x)^2] =∫dT=T=tanx loopになっていて、 逆算しているのと同じです。 --- p1=∫dx[1/cosx] =∫dx[cosx/(cosx)^2] =∫dx[cosx/((1-sinx)(1+sinx))] sinx=T dx*cosx=dT dx=[dT/cosx] =∫[dT/cosx][cosx)/(1-sinx)(1+sinx)] =∫dT[1/(1-T)(1+T)] =(1/2)∫dT[{1/(1-T)}+{1/(1+T)}] =(1/2)[-log|1-T|+log|1+T|] =(1/2)[-log(1-sinx)+log(1+sinx)] =(1/2)log[(1+sinx)/(1-sinx)] =(1/2)log[(1+sinx)^2/(cosx)^2] =log|(1+sinx)/cosx| あるいは、 p1=∫dx[1/cosx] tan(x/2)=T dx((1/2)/[((cos(x/2))^2)])=dT dx(1/2)[1+(tan(x/2))^2)]=dT dx(1/2)[1+(T^2)]=dT dx=2dT/[1+(T^2)] cosx=[((cos(x/2))^2)-((sin(x/2))^2)]/[((cos(x/2))^2)+((sin(x/2))^2)] =[1-((tan(x/2))^2)]/[1+((tan(x/2))^2)] =[(1-(T^2))/(1+(T^2))] 1/cosx=[(1+(T^2))/(1-(T^2))] p1=∫dx[1/cosx] =∫(2dT/[1+(T^2)])[(1+(T^2))/(1-(T^2))] =2∫dT/(1-(T^2)) =2∫dT/(1-T)(1+T) =∫dT[{1/(1-T)+{1/(1+T)} =-log|1-T|+log|1+T| =-log|1-tan(x/2)|+log|1+tan(x/2)| =log|[1+tan(x/2)]/[1-tan(x/2)]| =log|[cos(x/2)+sin(x/2)]/[cos(x/2)-sin(x/2)]| =log|[cos(x/2)+sin(x/2)]^2)/cosx| =log|(1+sinx)/cosx| ---

noname#70525
質問者

お礼

詳しいご回答を頂いたので、じっくり考えてからお礼申し上げたかったのですが、その時間が取れそうもないです・・・質問しっぱなしになって申し訳ありません。 また、確認しておこうと思います。 詳しいご回答ありがとうございました。

その他の回答 (1)

  • Tacosan
  • ベストアンサー率23% (3656/15482)
回答No.1

三角関数が入って積分しにくいときは t = tan x/2 と置換するのが常道ですね. 形によっては t = sin x とか t = cos x ともしたりしますが.

noname#70525
質問者

お礼

三角関数の入ったような積分に出くわしたことがなかったので (積分を習った時にはきっと出くわしていたと思います・・・が・・・すっかり忘れてしまっています^^;) その方法には気づきませんでした。 ご回答ありがとうございました。

関連するQ&A

  • (cos(x))^1/2の不定積分

    簡単かもしれませんが、(cos(x))^1/2の不定積分がわかりません。 t=(cos(x))^1/2=√(cos(x))とおいてみたんですが、複雑な無理関数になってしまいました。これでしか解けないのでしょうか? もっと簡単な三角関数の変換などがあったら教えてほしいです。 お願いします。

  • sin(x^2)やcos(x^2)の不定積分

    sin(x^2)やcos(x^2)の不定積分が初等関数で表せないことはexp(-x^2)の不定積分が初等関数にならないことと、同様に証明できるはずだと思うのですが、どのようにして証明されるのでしょうか。「Mathematicaでできないからできない。」というようなことではなく、きちんとした論証を知りたいのです。

  • 積分の定義からの計算

    いつもお世話になっています。 独学で数学を勉強して、微分が終わり積分に入りました。 微分では基本的な関数(x^n, e^x, sin(x), cos(x), tan(x), log(x) )を 微分の定義から計算することができました。 積分も同じように、区分求積法で上記の関数を計算するところから スタートすると思っていたのですが、 実際にやってみると tan(x), log(x) がどうしてもできません。 教科書やネットを見ても、微分と積分は逆だということを示してから、 それを使って積分の計算をするという流れになっているようです。 一方で、微分と積分が逆だとわかったのは、歴史的には後になってから というような記述も見つけました。 とすると、やっぱり tan(x), log(x) を区分求積法で計算できないのは 自分ができていないだけのような気もします。 tan(x), log(x) は区分求積法で計算できないのでしょうか? それとも、できるけども複雑なので、現在では微分と積分が逆ということを説明してから、 楽な方法で tan(x), log(x) などの積分を求めるという流れの説明になっているのでしょうか?

  • 1/√(x^2+a^2) の積分について

    かなり考えたのですが1/√(x^2+a^2)の積分が うまくいかないので質問させてください。 参考書に載っているのは1/√(x^2+a^2)の原始関数は(xで積分)はlog|x+√(x^2+a)|ともうほぼ公式的に出ています。たしかに長い計算になるので覚えてしまったほうがよいうと思うのですが覚えるのには自分で導き出して納得してから覚えたいので自力で導き出そうと思ったのですが行き詰まってしまいました。私は以下のようにしました。 紛らわしいと思いますのでsin^2θ等は(sinθ)^2と記述しました。また1/√(x^2+a^2)でaでやるといろいろと読む方も疲れると思いますので「1」として計算していきます。よって計算結果がlog|x+√(x^2+1)|となるように目指します。 1/√(x^2+1) 先ずx=tanθとおくと ∫cosθ・(1/couθ)^2 dθ =∫1/cosθ dθ =∫cosθ/(cosθ)^2 dθ =∫cosθ/{1-(sinθ)^2} dθ さらにsinθ=tとおくとdt/dθ = cosθ より ∫1/(1-t^2) dt =1/2∫1/(1-t) + 1/(1+t) dt ={log|(1+t)/(1-t)|}^1/2 =log|√(1+t)/√(1-t)| ここで打ち止めになってしまいました。t,θを元に戻しても公式のような形にはなりませんでした。 どなたかご存知のかたご教授ください。よろしくお願い致します。

  • 1/xの積分について

    1/xを積分するとlogxとなりますが、1/x^2を計算する場合、普通の積分の公式に従って、-x^-1となります。 なぜ1/xのときだけlogxがでてくるのかすごく疑問に思います。 みなさんは疑問に思ったことないでしょうか? 理由知っている方は教えてください。 確かにlogxを微分の定義にしたがってlimなどを使って計算していくと1/xとなり、積分はその逆なんだからlogxとなると言ってしまえばそれですみますが、納得しません。 不思議すぎてたまりません。 この原因はそもそも微分というものが、limという概念で、実際は0ではないが、0とみなしてしまおうという考え方からこのような変な結果がでてきているのでしょうか?

  • cos(x/2)*cos(x/2^2)*・・・・・cos(x/2^n)

    実数x及び自然数nに対して a_n=cos(x/2)*cos(x/2^2)*・・・・・cos(x/2^n) とする。 (1)2^n*a_n*sin(x/2^n)の値はnと無関係に一定であることを証明せよ。 (2)log|a_n|をxで微分することにより、 Σ(n=2~∞)1/2^n *tan(π/2^n)=1/π であることを証明せよ この問題に取り組んでいます。 (1)で2^n*a_n*sin(x/2^n)の計算を行っていて、いろいろな三角関数の公式を利用してみたのですが全然うまくいきません。「nと無関係」ということはnが消えればいいということだと思うのですが・・・。 (2)はloga_nを微分したところ -1/2 tan(x/2) - 1/2^2 tan(x/2^2) -・・・となったのですがここから証明すべき式に変形するにはどうしたらいいのでしょうか? 回答いただければありがたいです。よろしくお願いします

  • 三角関数の積分

     sin^2(x)を積分するとき、倍角の公式を用いて sin^2(x)=(1-cos(2x))/2 として積分計算できますが、 これ以外の方法でsin^2(x)を積分するとはできるのでしょうか? (部分積分を使ってみたのですが元に戻ってしまいうまくいきません。)

  • 「微分」と「導関数」  「不定積分」と「原始関数」

    高校で授業をしていてふと疑問に思ったことです。 手元の高校の教科書(数研)では「導関数を求めること」を「微分する」と表現していて、 「微分」という言葉は演算を表す動詞で、その結果を表す名詞(?)ではないようなのですが、 f(x)に対してf'(x)のことを「fの微分」とも呼びませんでしたっけ? 同じように積分に関してなんですが、 教科書では「F'(x)=f(x)であるF(x)をf(x)の不定積分または原始関数という」となっているんですが、 この「不定積分」と「原始関数」ってもともと別に定義していたように思うのです。 どうも、用語の使い分けが混乱しているので、  「微分」と「導関数」  「不定積分」と「原始関数」 この正式な使い分けについて、教えてほしいのです。 もっとも、高校ではあまり厳密にうだうだ言ってもかえって混乱するので、ある程度で流すわけですが。。。 よろしくお願いします。

  • 不定積分∫log(1+x)/x dxが分かりません

    不定積分∫log(1+x)/x dxが分かりません。教科書(理工系の微分積分学:学術図書出版)を読み漁ったのですが、見つかりませんでした。部分積分と、置換積分を考えてみて計算したのですが、私のやり方では両方うまくいきませんでした。(参考書としては、マセマの微分積分学の本を持っています。) 置換積分:1+x=exp(t)と置換する。(与式)=∫texp(t)/exp(t)-1 dtとなりうまく計算できません。 それともこれは何かでうまくはさんで解くタイプの問題なのでしょうか?(ハサミウチの原理などを利用) 大本の問題は広義積分の問題で、積分区間は、-1→1となっています。 何か知っていることがありましたら、教えてください。よろしくお願いします。

  • 積分∫[0→1]√(1-x^2)dx=π/4

    定積分∫[0→1]√(1-x^2)dx=π/4 この計算の仕方が分かりません。 x=sinθとおく。dx=cosθdθ。x[0→1]がθ[0→2/π]になる。 ∫[0→1]√(1-x^2)dx=∫[0→2/π]√cos^2θdθ ここまでは合ってますか? 次に半角の公式を使って(この半角の公式とやらがよく分からないのですが)1/2∫[0→2/π]1+cos2θdθとなり =π/4となる様です。計算の説明を分かりやすくお願い致します。 また、π/4 は 45°で、cos(π/4)=1/√2、sin(π/4)=1/√2 ですが、それとの関係はどうなるのでしょう?