• ベストアンサー

誘導起電力は回路が閉じていなくても同じ

「コイルに磁石を出し入れしたときに生じる誘導起電力の大きさは回路が閉じていても閉じていなくても同じ」と本に書いてあります。 起電力が生じるということは電流が流れるということです。回路が切れていても(閉じていない)電流は流れるのでしょうか。  類似の質問で、家庭に来ている100Vコンセントに、電源をOFFにした電気製品をつないだ場合(回路が閉じていない場合だと思うのですが)、コンセントからその電気製品までの線に電流は流れるのでしょうか。  前から疑問に思っていたのでどなたか教えていただけないでしょうか。よろしくお願いいたします。

質問者が選んだベストアンサー

  • ベストアンサー
  • oh_tokyo
  • ベストアンサー率75% (3/4)
回答No.3

もう大昔に習った技術なので、間違ったら御免なさい。 ◆ 誘導起電力なので、負荷の回路を作ったとき:-  回路が開いていたら電流は流れません。 回路を閉じれば流れます。  起電力と、その起電力によって流れる電流とを、混同しているのではないでしょうか。 つまり、発電しうるエネルギーの能力[A]と、それによって流れるマイナス電子の動き[B]とは、別の事象の筈です。 能力 [A] =/= 現象[B] で、別次元のことだと思います。 ◆ 機器の電源 SW をOFF にした場合:-  理論上では、電流はまったく流れません。  しかし、厳密に言うなら、現実には僅かな漏洩電流は流れます。 これは、この質問とは別問題の一般論になりますが。  * SWほか各所の絶縁材が無限大の抵抗値ではないので、微弱な電流が流れ続けます。電池を器具へ入れっ放しにした場合と同じ現象です。  * 電源コード間に(配電線間を含め)僅かな充電電流が流れます。理論上の値程度です。  * AC電源の電流とは別ですが、電源コードがアンテナの役割をして高周波電流が無視できない程流れている筈です。 AC機器への影響は殆どない造りになっている筈です。 このような現象があるので、電流が問題になる場合なら注意が必要と思います。

sakura54
質問者

お礼

oh tokyo様、sanori様、ojisan7様 皆様、さっそくのご回答感謝いたします。 皆様のおっしゃるとおり、私は起電力とそのため流れる電流を混同していました。起電力が生じていても回路が切れている(開いている)なら、無限大の抵抗が入っていることと同じなので電流はながれないのですね。 電源をOFFにした電気製品の場合はスイッチOFFの状態が無限大の抵抗とはいえないので、微小な電流が流れるということも分りました。 ありがとうございました。

その他の回答 (2)

  • sanori
  • ベストアンサー率48% (5664/11798)
回答No.2

閉じていない回路の、2つの端っこをA点、B点としましょう。 そして、AとBとを抵抗値無限大の電気抵抗でつなぐことにより、回路を閉じた状態を想定しましょう。 起電力(電圧)が生じても抵抗が無限大なので電流が流れません。

  • ojisan7
  • ベストアンサー率47% (489/1029)
回答No.1

「誘導起電力は回路が閉じていなくても同じ?」 当然、同じです。起電力は、電気を流そうとする力(ポテンシャル)です。回路が切れている場合には、その箇所の抵抗は無限大と解釈できますから、起電力が存在しても、電流は流れないのです。

関連するQ&A

  • 誘導起電力

    学校の実験で誘導起電流の測定を行ったのですが・・・ 磁石をコイルに近ずけると起電力は一端は上昇するのですが、その後徐々に下がってコイルと磁石の距離が0になると、起電力も0になりますよね。それの、理由がわからないのでどなたか、教えていただけませんか?

  • 自己誘導起電力

    直径1mのコイルのトンネル内に、磁石を通過させて起電力を誘導させたいのですが、 現存する磁石やコイルで、誘導できる最大起電力はどのくらいでしょうか?

  • 誘導起電力について

    この環状コイルに流れる誘導起電力の向きを教えていただけないでしょうか? また、電流の向きはどうやって決めるのでしょうか? 回答よろしくお願いいたします。

  • コイルの逆起電力と回路について

    コイルについて調べていると、図のようなRL回路を見かけます。 スイッチをオフにするとコイルの逆電力が電流を維持するように発生し、電流は時間差を持ってゼロとなるといった解説をよく見ます。 このようにスイッチオフで完全に断線させてしまった回路で電流が流れるとはどういうことが起こっているのでしょうか?(流れた電流はどこに行くのですか?) また、図のように逆起電力が最初の電圧源の電圧を上回るものなのでしょうか? また、スイッチの切り替えで、抵抗とコイルだけの回路になる場合は電流が流れ続けるのはわかるのですが その場合でも逆起電力が元の電力を上回るものですか? よろしくお願い致します。

  • 誘導起電力について

    直流発電機の原理的な構造は以下の写真のようになりますが、コイルがN極とS極にたいし平行になった時は、ab間、cd間の誘導起電力は0になるのでしょうか? また、誘導起電力と誘導電流の違いはなんなのでしょうか? 片方のみでもいいので回答よろしくお願いいたします。

  • 誘導起電力の大きさ

    誘導起電力は、ファラデーの法則からN回巻のコイルを貫いている磁束がt(s)間にΦ(wb)だけ変化したとすると、 瞬間の誘導起電力は e=-N・Φ/t となります。 1点目は、磁束が電流に比例するから、(略)  e=-L・I/t となる。  Lは自己インダクタンス という説明があるのですが、磁束が電流に比例するというのは、経験則?法則なのでしょうか? 2点目は、磁界を導体が切るときの誘導起電力の大きさについてですが、磁束密度B(T)、導体の長さL(m)、導体が磁界を直角に切るときの速度をv(m/s)とすると、e=Φ/t=BLv と示されているのですが、なぜ磁束を切るときは、e=Φ/t となるのでしょうか。コイルのように巻数Nがないことはわかりますが、単に磁束の変化を時間で割ることで求められると言うのがわかりません。

  • 誘導起電力について

    教えてください。 参考書に、トランスの一次巻線に電流を流すと、鉄心に磁束が生じ、二次巻線に起電力が誘導される。このとき二次巻線に誘導される起電力は次の式で表されます。 ---------------------------------------------------------------- e = -M × Δi / Δt [V] ---------------------------------------------------------------- e 誘導起電力 M 相互インダクタンス Δi 一次巻線の電流の変化量 Δt 電流変化にかかった時間 と、あります。 この公式に基づいて例題を解くと、誘導起電力eの答えはマイナスになるはずですが、答えではマイナスになっていません。解説では、 e = M × Δi / Δt にあてはめて考えればいいようになっています。 この公式の-Mのマイナスはどういうことなんですか? よろしくお願いします。

  • 逆起電力について

    逆起電力ついて色々と調べているのですが (電源+)→(スイッチ)→(コイル)→(抵抗)→(電源-) といった回路があったとします。 1)スイッチをオフにした時にコイルから発生する逆起電力は抵抗の方に向かって発生するのでしょうか?逆だからスイッチの方に向かってですか? 2)スイッチの位置ですがコイルの前につけるのとコイルの後ろにつけるのとではどちらが正しいのでしょうか? 3)その際に発生するのは電圧の事それとも電流の事ですか?電圧だとしたら元の電源が100Vだとした場合、100V以上の電圧を取り出せると言う事でしょうか? また、この回路の電源の+-から並列に別の回路を組んだ場合、別の回路の方にも並列なので同じだけの高電圧がかかってくると言う事でしょうか? 電流だけが変化する場合は、この回路だけに高電流が流れ、他の並列回路は特に問題なしと言う事でしょうか? 以上の3点が色々調べてるうちにこんがらがってきて疑問に思ったのですがすっきりするような解説が見つけられなかったのでよろしくお願いします、ダイオードやコンデンサなどを使っての逆起電力対策の話は別で質問していますのでここで無しでお願いします。

  • 電磁誘導

    電磁誘導で、誘導起電力を大きくするためには、磁石を速く動かしすとよく、それは、コイルを貫く磁束の変化の割合が大きいほど大きくなるからだ。ということですが、 磁石を動かす速さを大きくすれば、いくらでも誘導起電力は大きくすることができるのでしょうか。 1巻のコイルによる起電力の限界は無いのでしょうか?

  • 誘導起電力について

    金属製の車輪状の物体を,軸に平行で一様な磁場Bの中で・・・ 写真に示すように,半径rの金属製の車輪状の物体を,軸に平行で一様な磁場Bの中で図の向きに回転させる. (1)抵抗Rにはどの向きに電流が流れるか. (2)毎秒の回転数をnとすると,AB間に生じる起電力はいくらか. この問題で(1)はB→Aとなっていますが,これは写真で抵抗がある部分に対してのB→Aですよね? また(2)は起電力はスポークに対応する導線に沿った積分∫[0→r]vBdr=nπBr^2というように答えが求められています. (2)で疑問に思うことが,drというのは極座標におけるr方向に微小部分と考えることができますよね. 磁場の時間変化がなくても回路が動く場合,誘導起電力が生じますよね. 一般に誘導起電力はV=∫[c]{E+(v×B)}・ds (E,v,B,dsはベクトルで閉曲線cでの周回積分です) 磁場の時間変化がないのでE=0としてV=∫[c](v×B)・ds…(1)となるわけですよね ほかの問題集などで同様の問題を見ると解説にV=∫(v×B)・dr (drはベクトル)…(2)という式がのっています. drは極座標におけるr方向の微小部分を表しているようですが,なぜこれが誘導起電力を表すんですか? 誘導起電力は閉曲線を線積分したものですよね? V=∫[0→r](v×B)・dr ではなくV=∫[0→2πr](v×B)・dsではないのですか?