-PR-
解決
済み

大きな大きな大きな数

  • 暇なときにでも
  • 質問No.21195
  • 閲覧数105
  • ありがとう数4
  • 気になる数0
  • 回答数3
  • コメント数0

お礼率 33% (1/3)

10年ほど前なんですが『数の辞典』(書名うろ覚え)という本を読みました。この本は小さな数字から始まって、大きな数字について解説してあったものと記憶しています。
最後の方は、グーゴル数やグーゴルプレックスなどが来て、スクイーズ数などが出ていました。

で、もっとも大きな数としてあげられていたのが、ある博士が考えたとかいう表記による数でした。
それが確か、「3↑↑3」のような表記法だと思ったのですが、ほとんど覚えていません。

前置きが長くなりましたが、その表記法と内容、考えた人間について知りたいです。
できれば、日本語の参考文献、URL等のリファレンスも示していただけるとありがたいです。
またこれを超える表記法がその後出ていたら、教えていただきたいです。

また関連して質問なのですが、現在、数学の証明等に使われた最大の数はどれくらいのものなのでしょうか?
スクイーズ数より大きいらしいと言う情報は得ています。

変な質問になってしまいましたが、ご存知の方よろしくお願いいたします。
通報する
  • 回答数3
  • 気になる
    質問をブックマークします。
    マイページでまとめて確認できます。

質問者が選んだベストアンサー

  • 回答No.3
レベル14

ベストアンサー率 57% (1014/1775)

三たび、Stomachmanです。
Stomachmanの本棚を探し回ったら、ありました。ありました。なんだ、無理して思い出さなくてもよかったんだ...

David Wells「数の事典」東京図書1987(原著:Curious and Interesting Numbers, Penguin Books,1986)
もうひとつ、数を小さい順に解説している本がありまして、
Francois Le Lionnais(リヨネ)「何だ この数は?」東京図書1989(原著:Les Nombres Remarquables, HERMANN, 1983)
こちらの方が原著は古いですね。

ともかく、東京図書に訊けば、同じような本がまだまだあるのかも知れません (^o^)

* でかい数についてのさっきのUPは、驚くべし、かなり正確です。「数の事典」に載っているのは
(.....(3↑↑↑↑3個の↑の挟まった、3↑...↑3)個の↑の挟まった、3↑...↑3).....)個の↑の挟まった、3↑...↑3)
というカッコが63段重なるやつです。しかも、この数の出展は他ならぬ Gardnerの"Mathematical Games"(Scientific American, 1977) だと書いてあります!!
お礼コメント
sanaqbaimuru

お礼率 33% (1/3)

これです、これです!
いやー、すっきりしました。ある程度調べてはみたものの書名がうろ覚えだったせいか見つからなかったもので… 二冊ともなんとか手に入れたいと思います(^^

しかし途方もない大きさの数ですね。Mathematical Games 記載の数はもはやknuth氏の表記では間に合っていない感がありますねー(^^;

> 定理:3より大きい自然数が存在する。
> 証明: L>0であるから、L+3 > 3。
この手のは出てくるだろうなー、と期待していました :-)
#数学の啓蒙書で章の最後に出てくるようなオチ(^^

ともかくも本当にありがとうございました。
投稿日時 - 2000-12-24 00:32:39
-PR-
-PR-

その他の回答 (全2件)

  • 回答No.1
レベル14

ベストアンサー率 57% (1014/1775)

N+N = N × 2 N×N = N^2 の延長として、 N×N をN↑2と書いて、N^(N^(N^(.....^N).....) (Nがn個)を N↑n、そして N↑NをN↑↑2と書いて、N↑(N↑(....↑N)....) (Nがn個)を N↑↑n、そして N↑↑NをN↑↑↑2と書いて..... という記法だったと思います。 N↑↑↑...... ↑N (↑がN↑↑↑↑↑↑↑↑n 個 ...続きを読む
N+N = N × 2
N×N = N^2
の延長として、
N×N をN↑2と書いて、N^(N^(N^(.....^N).....) (Nがn個)を N↑n、そして
N↑NをN↑↑2と書いて、N↑(N↑(....↑N)....) (Nがn個)を N↑↑n、そして
N↑↑NをN↑↑↑2と書いて.....
という記法だったと思います。
N↑↑↑...... ↑N (↑がN↑↑↑↑↑↑↑↑n 個)なんていうのは、また新しいの考えなくちゃいけませんね。

●発明者はあのComputer ScienceのKnuth教授です。
この列は、アッカーマン(Ackermann)関数 A(m,n):
 A(0,n) = n+1 (n≧0のとき)
 A(m,0) = A(m-1,1) (m≧1のとき)
 A(m,n) = A(m-1,A(m,n-1)) (m≧1, n≧1のとき)
において、mを大きくしていったときに得られます(ちょっとだけ違うけれど)。

A(0,n) = n+1
A(1,n) = n+2
A(2,n) = 2n+3
A(3,n) = 2^(n+3)-3
A(4,n) = 2↑↑(n+3)-3
 :
どなたか、A(5,2)をちょっと計算してみます?

●数学の証明に使われた大きい数については、たしかガードナーの「数学パズル」で見た覚えがあるけれど、ラムゼー理論かなんかに出てきた
L = 3↑......↑3 (この↑は3↑......↑3個 (この↑は3↑......↑3個(....... (この↑は3↑3個)......) というカッコが66段(だっけか)入れ子になっている。
みたいな奴でしたねー。うろ覚えですいません。でもこれより大きい数が数学の証明に出てきます。
定理:3より大きい自然数が存在する。
証明: L>0であるから、L+3 > 3。
おあとが宜しいようで。


  • 回答No.2
レベル14

ベストアンサー率 57% (1014/1775)

Stomachman、間違えてしまいました。 「N×N をN↑2と書いて、N×(N×(N×(.....×N).....) (Nがn個)を N↑n」が正解です。
Stomachman、間違えてしまいました。
「N×N をN↑2と書いて、N×(N×(N×(.....×N).....) (Nがn個)を N↑n」が正解です。
このQ&Aで解決しましたか?
関連するQ&A
-PR-
-PR-
このQ&Aにこう思った!同じようなことあった!感想や体験を書こう
このQ&Aにはまだコメントがありません。
あなたの思ったこと、知っていることをここにコメントしてみましょう。

その他の関連するQ&A、テーマをキーワードで探す

キーワードでQ&A、テーマを検索する
-PR-
-PR-
-PR-

特集


いま みんなが気になるQ&A

関連するQ&A

-PR-

ピックアップ

-PR-
ページ先頭へ