• ベストアンサー

場合の数(高校レベルだと思います)

凸n角形(n≧4)の3個の頂点を結んで得られる三角形のうちもとのn角形と辺を共有しないものの個数を求めなさい。 簡単な問題ですみません。n個の頂点から3個の頂点を選ぶことで、作れるすべての三角形の数はnC3でオッケーだと思うんです。ここからもとのn角形と辺を共有している三角形を除けば良いと思い、一つの共有する辺と一つの頂点で出来る三角形が一つの辺につき(n-4)なので、n(n-4)個、二つの共有する辺で出来る三角形がn個、つまりnC3-n(n-4)-nが答えなのかな?って考えてみたのですが、間違っている気がします。・・・。(ーー;)どうでしょうか?

質問者が選んだベストアンサー

  • ベストアンサー
回答No.1

合っていると思いますよ。 考え方もそれで間違いないです。

kira_kira_ken
質問者

お礼

何か苦手なんですよねぇ・・・。 答えにたどり着いても自信がないというか。 ありがとうございました。

全文を見る
すると、全ての回答が全文表示されます。

その他の回答 (1)

noname#8027
noname#8027
回答No.2

n=4,5,6・・・ の場合と考えてみましょう。 きっと満足できると思います。

kira_kira_ken
質問者

お礼

ありがとうございました。 安心しました。

全文を見る
すると、全ての回答が全文表示されます。

関連するQ&A

  • 正答の導き方(数学A)

    こちらの問題を上手く解くことが出来ません。 ちなみに、この問題は青チャートのp262の例題(3)の問題です。 【問題】 正n角形A1A2……Anの頂点を結んで出来る三角形のうち, 正n角形と辺を共有しない三角形の個数を求めよ. ただし,n≧5とする. 私は以下の様にして式を立てました。 **************************************************************** この問題は“~を共有しない”個数を求める。 だから、まず始めに“~を共有する”個数を考え、 最終的にそれをすべての三角形の総数から引けば良い。 よって、 正n角形の頂点を結んで出来る三角形の個数………nC3個(全体) 正n角形と2辺を共有する三角形の個数………n個 正n角形と1辺のみ共有する三角形の個数………n(n-4)個 と表すことが出来る。 以上の事から、≪nC3-n(n-4)-n≫という式が成り立つ。 **************************************************************** ここまではチャートに記載されている解法と同様な考えで進めてこられましたが、 いざこの式を解き始めてみると、途中から解らなくなってしまいました(>_<; 私が解けたのは、 n(n-1)(n-2)/3・2・1-n(n-4)-n =1/6n(n-1)(n-2)-n(n-4)-n までです。 ここから先はどの様にして解いていけば良いのでしょうか? 記載されている解き方も参考にはしましたが、まったく解りません;; 宜しくお願いします!!

  • 五の四 高校数学の場合の数です

    1から2nまでの2n個の整数がある 次の二つの性質(A),(B)をもつ4つの整数a,b,c,dをこの2n個の整数から選ぶ選び方は何通りあるか、ただしn>=2とする(A)1<=a<b<c<d<=2n (B)a+d=b+c 回答d-aを固定してkは自然数として(1)d-a=2k+1のときはa,dの決め方はa=1~2n-(2k+1)の2n-(2k+1)通りでb,cの決め方はk通り (2)d-a=2(k+1)のときはa,dの決め方がa=1~2n-2(k+1)の2n-2(k+1)通りでb,cの決め方はk通り したがって求める場合の数はΣ[k=1→n-1]{2n-(2k+1)}k+Σ[k=1→n-1]{2n-2(k+1)}k =Σ[k=1→n-1]{(4n-3)k-4k^2}=n(n-1)(4n-5)/6 (注)(B)は数直線上でaとdの中点とbとcの中点が同じという条件でこの中点の位置を固定するのがよく例えばn=4のとき中点が3.5と4の場合は各3C2通り、中点が5.5と5の場合も各3C2通りと考えて 4Σ[k=3→n](k-1)C2+nC2=4×nC3+nC2 となっていたのですがまず(1)と(2)でd-a=2k+1とd-a=2(k+1)の場合で分ける理由がわかりません a,dの決め方が(1)でa=1~2n-(2k+1)の2n-(2k+1)通り、(2)でa=1~2n-2(k+1)の2n-2(k+1)通りとなるのもよくわからないです (1)と(2)でb,cの決め方はk通りと同じになるのも何故なのかわかりません Σ[k=1→n-1]{2n-(2k+1)}k+Σ[k=1→n-1]{2n-2(k+1)}kとかのkがn-1までなのが何故なのかわかりません 注の所はn=4の時2n=8ですから中点って4.5じゃないんですか?何故3.5と4の場合とか5.5と5の場合とかで考えるのがわからないのと3C2というのが何で出てくるのかと最後の4Σ[k=3→n](k-1)C2+nC2=4×nC3+nC2見たいな式が何で出てくるのか、とにかくサッパリわかりません

  • 場合の数

    3番なのですが(1)の状態のn個の座席から一つ除く座席を選んであげればk=n-1の状態になると思ったので(1)×nC1としたのですが違いました。どこが違うのですか?

  • 数学の問題 場合の数と漸化式

    数学の問題 数字1,2,3をn個並べてできるn桁の数全体を考える。そのうち1が奇数回現れるものの個数をa(n)、1が偶数回現れるか全く現れないものの個数をb(n)とする。 a(n+1)、b(n+1)をa(n)、b(n)を用いて表せ。 という問題です。 説明された考え方 a(n+1)について 1が奇数回現れている数の一番左に1桁の数を加えるとすると 1が奇数回でないといけないから2か3である。 よって、2a(n) 1が偶数回現れている数の一番左に1桁の数を加えるとすると 1が偶数回でないといけないから1である。 よって、b(n) 以上より、a(n+1)=2a(n)+b(n) 同様にして、b(n+1)=a(n)+2b(n) が答えです。 解説を聞く前に自分で考えたその考え方は同じでした。 n桁の数に1桁の数を加えるというやり方です。 しかし、計算が違いました。 説明では、「一番左に1桁加える」として計算していますが 最初、n桁の数の場合、その数と数の間はn+1あるから そのn+1の間から一か所選んで、そこに2か3を入れる、そしてそれがa(n)個あるから a(n+1)=(n+1)C1 * 2 * a(n) + (n+1)C1 * 1 *b(n) を計算しました。 何がいけないのでしょうか? 一番左に加えると決めつけてしまってもいいのでしょうか? お願いします。

  • 平面上のn個の頂点から直角三角形は最大幾つ作れるか

    「平面上の相異なるn個の点のうち3点を結んで出来る直角三角形は最大で幾つか。ただし、nは3以上の整数とし、三角形同士は辺や頂点を共有しても、あるいは重なっても構わないものとする」 どこかに載っていた問題ではなく、ふと思いついたもので、解決できるとは限りません。ただ、私にはどうやっても無理なようです。数学の得意な方、解いて頂けませんか。 題意がわかりにくいかもしれませんので補足しますと、点の位置は任意です。ただ、それらを適当に配置すれば、それらを結んで出来る直角三角形の個数は、その点の個数nに対する最大値を取るはずです。 単なる「三角形」は当然nC3個できるので、そのnC3個が全部直角三角形になりうるのならそれで問題解決ですが、nが5以上のときは残念ながらそうはいきません。 nが4のときは、4点が長方形の頂点の位置にあれば最大値4なので、これを上手く使えば解けるかもしれないとか、あるいは、終点が同じで内積が0になる一次独立な2本のベクトルの組がなるべく多くなるようにすればよいとか、色々考えてみましたが、どれも行き詰まってしまいました。どうでしょう、解けますか?

  • 5-8 高校数学 場合の数

    nを正の整数とし,n個のボールを3つの箱に分けて入れる問題を考える、ただし1個のボールも入らない箱があってもよいとする 以下に述べる4つの場合について、それぞれ相異なる入れ方の総数を求めたい (1)1からnまで異なる番号のついたn個のボールをA,B,Cと区別された3つの箱に入れる場合その入れ方は何通りあるか (2)互いに区別のつかないn個のボールをA,B,Cと区別された3つの箱に入れる場合その入れ方は何通りあるか (3)1からnまで異なる番号のついたn個のボールを区別のつかない3つの箱に入れる場合その入れ方は全部で何通りあるか (4)nが6の倍数6mであるときn個の互いに区別のつかないボールを区別のつかない3つの箱に入れる場合その入れ方は何通りあるか 解説(1)は3^n通り (2)は[n+2]C[2]=(n^2+3n+2)/2通り (3)求める場合の数を次のように三分割する n個とも1箱だけにいれるもの・・・x通り n個を2箱に分散して入れるもの・・y通り n個を3箱に分散して入れるもの・・・z通り これらx,y,zと(1)との関係を考えると、まずx=1であり(1)ではこれを3通りと数えy通りの1つ1つを(1)では 3!通りと数えz通りの1つ1つを(1)では3!通りと数えている したがって x×3+(y+z)×6=3^nよって求める場合の数x+y+zは1+y+z=1+(3^n-1×3)/6={3^(n-1)+1}/2通り (4)3箱のボールの個数をa,b,c(a<=b<=c)としa=b=cをみたすもの・・p通り a=b<c or a<b=cをみたすもの・・q通り a<b<cをみたすもの・・r通り すると(2)の場合の数はp+3q+6r通りと数えられるからp+3q+6r=(n^2+3n+2)/2・・・(2) ここでp=1であり、またq通りは(0,0,6m),(1,1,6m-2),・・・、(3m,3m,0)の3m+1通りから(2m,2m,2m)の1通り を除いてq=3mである  よって(2)からr=1/6×{(36m^2+18m+2)-(1+3×3m)}=3m^2 以上により答えはp+q+r=3m^2+3m+1通り とあるのですが (3)のx,y,zが(1)で1や3!通りずつという所と x×3+(y+z)×6=3^n の所が何を意味しているのか分かりません (4)の解説で(2)の場合の数がp+3q+6rの所とr=1/6{}=3m^2 以上によりp+q+r=3m^2+3m+1通りというのが何でなのか分かりません

  • 納得できない

    正8角形において、各頂点を結んでできる辺を共有しない三角形はいくつできるか。 という問題があったのですが、僕は8*7*6*/3*2*1として56を出しました。そこから辺を含んでいる三角形の個数32+8を引いて16が出たので 辺は含んでいるが、ほかの三角形と辺を共有していない8個の三角形を足して 24としましたが、まちがいでした。もし答えが16だとすると、「辺を共有しない」ではなく、「変を含んでいない」でないとおかしいと思うのです。なぜ間違っているのか教えてください。 共有という言葉は含むという言葉とは違うので、16ではありえないと思うので16より多くなるとは思うのですが、だとしたらいくつなんでしょうか。

  • 高校数学・確率

    nを3以上の自然数とする。このとき、正2n角形の頂点から無作為に異なる4つの頂点を選び、それぞれA,B,C,Dとする。 三角形ABCが直角三角形である確率を求めよ。 この問題を 直径となる頂点:2n通り×1通り(1つめの頂点が決まればもう一つも決まるため) 残り1つ頂点:(2n-2)通り DはABC以外ならどこでもよいので(2n-3)通り よって2n(2n-2)(2n-3)/2nC4 と解きました。 どこが間違っているのか、なぜ間違っているのかご教示お願いします。 答えは3/2n-1です。

  • 情報数学の問題。

    試験問題の範囲内の問題なのですが、解答が無いので教えてください。 n個の頂点を持つ有限グラフGに対し、次は同値である。 (ⅰ)Gは木である。 (ⅱ)Gはサイクルを持たず、n-1本の辺を持つ。 (ⅲ)Gは連結であり、n-1本の辺を持つ。  (1)(ⅰ)→(ⅱ)  (2)(ⅱ)→(ⅲ)  (3)(ⅲ)→(ⅰ) 個の3問の問題をどうかお願いします。

  • 次の問題を解いて解法を教えてください。

    nを2以上の自然数とし、正2n角形の2n個の頂点を反時計回りにA1、A2,…,A2nとする。A1,Ai,Aj(1<i<j)を3頂点とする三角形で∠AiA1Aj≧90°を満たすものの個数をNnとする。 (1)N4を求めよ。 (2)Nnをnの式で表せ。 (3)A1、A2,…,A2nの中から3点選び、これらを頂点とする三角形を作るとき、この三角形が鋭角三角形(すべての角の大きさが90°より小さい三角形)となる確率Pnを求めよ。 (4)lim(n→∞)Pnを求めよ