外測度と開集合・閉集合について

このQ&Aのポイント
  • 外測度と開集合・閉集合についての質問
  • 質問1: 式 A=∪[k→∞]Ak の成り立ちについて
  • 質問2: 式 lim[k→∞]Σ[j≧k]Г(Dj)=0 の理由
回答を見る
  • ベストアンサー

外測度と開集合・閉集合について

添付の画像について2つ程質問があります。 (下層に画像の問題についての補足のせています) (1)始めのA=∪[k→∞]Akである、のところがなぜ成り立つかがいまいち分かりません。 (文脈から「G^cは閉集合。よって…」とあるので開集合・閉集合の定理の中でA=∪[k→∞]Akが言えるものがあるのかなと探してたのですが分からず…) (2)「もし、Σ[j=1→∞]Г(Dj)<∞であればlim[k→∞]Σ[j≧k]D(Гj)=0である…」の部分、本当はlim[k→∞]Σ[j≧k]Г(Dj)=0(誤植?)かと思うのですが、これもなぜ0になるかが分かりません。 以下画像の問題の補足をします。 問題は 「R^n上の外測度Гと、 R^n の部分集合E1, E2 に対して、d (E1, E2)[距離関数]>0ならばГ(E1UE2)=Г(E1)+Г(E2)が成立しているとする。 このとき A をR^nの部分集合, G を開集合で A⊂GとしAn={x∈A|d(x,G^c)≧1/k} (k=1,2,...) とおくと、 lim[k→∞] Г(Ak)=Г(A) が成り立つ。」 というものです。G^cはRの補集合です。 [証明] 冒頭の証明は「Gが開集合なのでG^cは閉集合。よってA1⊂A2⊂…⊂Ak⊂…AかつA=∪[k→∞]Akである。」 とあり、以降続きが画像の部分です。 ご教授頂けますと幸いです。 何卒宜しくお願い致しますm(_ _)m

質問者が選んだベストアンサー

  • ベストアンサー
回答No.4

> d(x,y)=0⟺x=y > d:X×X→[0, ∞)なので、d(x,y)≥0 であること これは「Xの点と、Xの点との距離」が満たすべき「性質」、でしょう。 今言っているのは「Xの点と、Xの『部分集合』との距離」の『定義』。良く見ましょう。 その本には書いてないというのなら、その本では点と集合との距離の定義は前提知識として扱っていると言うこと。 検索すれば出てくる。例えば: https://nekodamashi-math.blog.ss-blog.jp/2018-11-08-2

gojalptmax
質問者

お礼

すみません、点と「集合」との距離ということで誤解しているところがありました。 ただ、見ている参考書には定義がないのと、点と「集合」との距離の概念を初めて知ったので一度ネットで色々調べてみようと思います。 最後まで丁寧に教えてくださりありがとうございます!助かりました。

その他の回答 (3)

回答No.3

> (1)の中段でd(y, G^c)=inf{d(y, z)|z∈G^c}となっていますが、これはなぜでしょうか…? 集合間の距離とか、集合と点の距離の『定義』って、今まで出てきませんでしたか?

gojalptmax
質問者

お礼

補足で書いたことが不足してました、、 d:X×X→[0, ∞)なので、d(x,y)≥0 であることも把握しています。

gojalptmax
質問者

補足

今見ている参考書には定義が載っていないのです… ただ、一般的な定義 d(x,y)=0⟺x=y d(x,y)=d(y,x) d(x,z)≤d(x,y)+d(y,z)(三角不等式) を満たすものだという認識でいます。

回答No.2

あ、ちなみに「『私が』書こうとした内容を文章で打ちこむと、読みづらくなってしまう」という意味です。どうでもいいですが念の為。

回答No.1

文章で打つのは読みづらいですね...

gojalptmax
質問者

補足

ご回答ありがとうございます! 確かに、文章だと読みづらいですよね、、すみませんm(_ _)m 入力するのも大変だったりするのでもう少し良い方法ないか考えておきます (1)の中段でd(y, G^c)=inf{d(y, z)|z∈G^c}となっていますが、これはなぜでしょうか…?

関連するQ&A

  • 任意のBorel集合で恒等的に0となる測度について

    質問させていただく前に、必要なことを先に述べたいと思います。 μ_1を質問のタイトルで述べた(R^NのBorel集合族B’の元に対して0となる)測度とし、R^NにおけるLebesgue測度をμ、その可測集合をM’と置き、また∀E⊂R^Nに対し、λ_1(E)=inf[E⊂B∈B’]{μ_1(B)}(μ_1から導かれる外測度)、その可測集合をM_1’と置きます。  このとき、μ_1が恒等的に0であるからλ_1もすべての部分集合E⊂R^Nに対して0となり、よって ∀A⊂R^N s.t. λ_1(A) = λ_1(A∩E) + λ_1(A∩E^c) (E^cはEの補集合) が成り立つので、任意のE⊂R^Nがλ_1可測になり、M_1’={E|E⊂R^N}となると思います。 一方、Lebesgue可測集合M’はR^Nの部分集合すべてを含むとは言えませんので(Cantor集合がその一つです。)、M’≠M_1’(かつM’⊂M_1’)が成り立ちます。 僕が読んでいる教科書(伊藤先生のルベーグ積分入門)では上の記述でM’=M_1’と書かれて、そこから論理を展開しているようなのですが、僕は上のようなことがあるのでこれはおかしいのではないかと思いました。僕が確認したいのは、上のような論理が正しいかどうかということなのですが、どなたか確認お願いできますでしょうか?よろしくお願いします。

  • Lebesgue測度μではμ(S\T)=μ(S)-μ(T)と変形できるの?

    Cantor集合の説明で [0,1]を3等分して(1/3,2/3)を取除くと[0,1/3]と[2/3,1]が残る。次に[0,1/3]と[2/3,1]を3等分して (1/9,2/9),(7/9.8/9)を取除く。 n回目には長さ1/3^nの区間2^(n-1)を取除いた事になるので取除かれた区間全体Gの長さμ(G) (μはLebesgue測度)は Σ[n=1..∞]2^(n-1)/3^n=1 …(1) 従って μ([0,1]\G)=μ([0,1])-μ(G)=(1-0)-1(∵Lebesgue測度の定義と(1))=0 でこの差集合[0,1]\GをCantor集合という。 でμ([0,1]\G)=μ([0,1])-μ(G)となぜ変形出来るのか分かりません。 Lebesbue測度の定義は下記のとおりだと思います。でもどうしても差集合のルベーグ測度が夫々のルベーグ測度の差になる事が導けません。μ([0,1]\G)=μ([0,1])-μ(G)となぜ変形出来るのでしょうか? [定義]Aを全体集合,B⊂2^Aとする。BがA上でσ集合体をなす時,AはBの可測空間をな すと言い,(A,B)と表す。 [定義] (A,B)を可測空間とする。写像f:B→R∪{+∞}は(A,B)上で測度をなす。 ⇔(def) (i) ∀A∈B,f(A)∈{r∈R;0≦r}∪{+∞},f(φ)=0 (ii) ∀m,n∈N\{0} (m≠n), b_m,b_n∈B且つ b_m∩b_n=φ⇒f(∪[k=1..∞]b_k)=Σ[k=1..∞]f(b_k) [定義]f:B→R∪{+∞}を可測空間(A,B)上の外測度をなす。 ⇔(def) (i) f(2^A)⊂[0,∞],特にf(φ)=0 (ii) C⊂D(C,D∈2^A)⇒f(C)≦f(D) (iii) f(∪[n=1..∞]C_n)≦Σ[n=1..∞]f(C_n) (C_n∈2^A (n∈N)) [定義]f:B→R∪{+∞}を可測空間(A,B)上の外測度とする。E(⊂A)は(A,B)上でf-可測 (集合)。 ⇔(def) ∀C∈2^A,f(C)=f(C∩E)+f(C∩E^c) [定義] R^nのm次元区間全{Π[i=1..m](a_i,b_i]\ {∞};a_i,b_i∈R∪{∞}(i=1,2,…,m)} (m≦n)をI(m,n)で表す。 [定義] R^nのm次元区間塊全体{∪[j=1..k]I_i;k∈N\{0},I^m∋I_1,I_2,…,I_k:互い に素}をC(m,n)で表す。 このとき,C(n,n)はR^nで有限加法族をなす。 [定義] 写像g:∪C(n,n)→R^nを C(n,n)∋∀∪[i=1..k]Π[ji=1..n](a_ji,b_ji]→g(∪[i=1..k]Π[ji=1..n](a_ji,b_ji]):= Π(b_i-a_i) (k=1且つΠ[i=1..n](a_j1,b_j1]は有界の時) sup{Π[i=1..n](d_i-c_i);(Π[j1=1..n](a_j1,b_j1]⊃)Π[i=1..n](c_i,d_i]は有界} (k=1でΠ[j1=1..n](a_j1,bj1]は非有界の時) 0 (k=1でΠ[j1=1..n](a_j1,b_j1]=φの時) Σ[i=1..k]g(Π[ji=1..n](a_ji,b_ji]) (k>1で ∪[i=1..k]Π[ji=1..n](a_ji,b_ji]∈C(n,n) (但し ,Π[j1=1..n](a_j1,b_j1],Π[j2=1..n](a_j2,b_j2],…,Π[jn=1..n](a_jn,b_jn]は互 いに素)の時) と定義するとこのgは可測空間(R^n,C(n,n))での有限測度をなす。 そして写像h:2^(R^n)→Rを2^(R^n)∋∀A→h(A):= inf{Σ[k=1..∞]g(E_k);A⊂∪[k=1..∞]E_k (E_k∈C(n,n) (n∈N\{0}))} で定義するとこのhは可測空間(R^n,C(n,n))で外測度をなす。 この時,このhをLebesgue外測度という。 [定義] 写像h:2^(R^n)→R∪{+∞}はルベーグ外測度とする。 L:={E∈2^(R^n);Eは可測空間(R^n,2^(R^n))上でh-可測}をLebesgue可測集合全体の集 合という。 [定義] hをLebesgue外測度とする。制限写像h|Lは測度をなす。 この時,この制限写像h|HをR^n上のLebesgue測度という。

  • 測度・ルベーグ測度について

    以下の問題がよくわからないので質問します。 (1) f:R→Rを単調増加な右連続関数とする。 (⇔f(x+0)=f(x),x∈Rかつ、x<yならば、f(x)<=f(y)が成立) f(∞)=lim(R→∞)f(R) f(-∞)=lim(R→-∞)f(-R)で定義する。 -∞<=a<b<=∞に対して、ρ((a,b])=f(b)-f(a)でρを定義すると、ρはA_R上の測度である。 カラテオドリ・ハーンの理論により作られる可測集合の族M_fとこの上の測度μ_fを考える。 このとき一点から成る集合{a}は可測集合(M_fの元)であり、μ_f({a})=f(a)-f(a-0)であることを示せ。 (2) R^n上のルベーグ可測集合の族M_(R^n)とその上で定義されたルベーグ測度μ_(R^n)を考える。 a>0とR^nの部分集合Eに対して、M_aE={ax=(ax_1,ax_2,...,ax_n|x=(x_1,x_2,...,x_n)∈E}で定義する。 このときE∈M_(R^n)ならばM_aE∈M_(R^n)かつμ_(R^n)(M_aE)=a^nμ_(R^n)(E)であることを示せ。

  • 「半順序集合になるようにせよ」という問が解けません

    急ぎです。 次の問が全く解けません。どなたかお願いします。 以下の集合Aと二項関係Rの組は順序集合ではないが、Rに対して操作(要素の除去や追加)によって半順序集合(A,R)になるようにせよ(反射律、反対称律、推移律を満たすようにせよ)。なお、行ってよい操作は最大で除去は2回、追加は1界までとする。 A={a,b,c,d,e,f,g} R={(a,a),(a,c),(a,e),(a,g),(b,a),(b,b),(b,e),(c,c),(c,g),(d,b),(d,d),(d,f),(e,e),(e,g),(f,f),(f,g),(g,g)} 除去する組:(  ,  ) 除去する組:(  ,  ) 追加する組:(  ,  ) 宜しくお願いします

  • ルベーグ測度,直積測度の零集合

    I,Jをユークリッド空間R^m,R^nの部分ルベーグ有限測度空間とします。 φ(x,y)(x∈I,y∈J)を論理式とします。 「φ(x,y)  a.e ((x,y)∈I×J)」 ならば 「「φ(x,y)  a.e (x∈I) 」 a.e (y∈J)」 は成り立ちますか。また、成り立たない場合はどのような反例がありますか。 但し、I×JはIとJの直積測度空間です。 全くわからないので、よろしくお願いします。

  • 集合について。

    Aを100以下の自然数の集合とする. また,50以下の自然数kに対し, Aの要素でその奇数の約数のうち最大のものが2k-1となるものからなる集合Akをとする. このとき,次の問いに答えよ. ①Akを求めよ. ②Aの各要素は, A1からA50までの50個の集合のうちのいずれか1つに属することを示せ. ③Aの部分集合Bが51個の要素からなるとき, y/xが整数となるようなBの異なる要素x.yが存在することを示せ. ④50個の要素からなるAの部分集合Cで, その中にy/xが整数となるような異なる要素x.yが 存在しないものを1つ求めよ.この問題をご教授頂けると幸いです。

  • 集合のφ

    高校で習う数学の範囲では、“適当な集合においては、常にφが含まれる”と簡単に考えて差し支えないでしょうか?例えば集合{a,b,c,d,e}というのは{a,b,c,d,e,φ}のことだとみなしても問題ないでしょうか? 部分集合を答えよ、という問題で{φ}というのが含まれていたので、え?って思ってしまって。

  • 再:ルベーグ測度,直積測度の零集合

    X,Yをユークリッド空間R^m,R^nの部分ルベーグ測度空間(X,Yはルベーグ可測集合で測度有限)とします。 φ(x,y)をx∈X,y∈Yを自由変数とする論理式、例えば「f(x,y)=g(x,y)」(f,gは可測関数)とします。 「φ(x,y)  a.e ((x,y)∈X×Y)」  ならば  「「φ(x,y)  a.e (x∈X) 」 a.e (y∈Y)」 は成り立ちますか。また、成り立たない場合はどのような反例がありますか。 但し、X×YはXとYの直積測度空間です。簡単な場合として、m=n=1,X=Y=[0,1]としてもらっても構いません。 全くわからないので、よろしくお願いします。

  • 数学A 集合

    今高1ですが、大学進学を考えているので 大学の入試問題を解いています。 解答を見てもわからない問題があるので、教えて下さい! 分からないところは f(g(x))とg(f(x)) がどういう意味なのかです。 問題は、 2つの関数f(x)=-x+3,g(x)=x^2+5 を考える。 -50以上50以下の整数の集合 A={-50,-49,・・・,-1,0,1,・・・,50} に対し、2つの集合BとCを B={f(x)|x∈A}, C={g(x)|x∈A} により定める。集合Mの要素の個数をn(M)で表す。 D{f(g(x))|x∈A}, E={g(f(x))|x∈A} によって集合D,Eを定めるとき、n(D), n(E)を求めよ。 という問題です。 解答は 集合Dは、 D={f(g(x))|x∈A}={f(x)|x∈C} と考えられるが、xが異なればf(x)の値は異なるから、 n(D)=n(C)=51 集合Eは、 E={g(f(x))|x∈A}={g(x)|x∈B} 集合Bは-47以上53以下の整数の集合で、絶対値の異なる整数は54個ある。よって、 n(E)=54 です。 2003年の近畿大学・理工学部の改題らしいです。 長くなってすみません<(_ _)> おねがいします。

  • C_k={x;2-1/k<x≦3},(k=1,2,3,…)とする時,lim[k→∞]C_kとP_X(lim[k→∞]C_k)を

    宜しくお願い致します。確率集合関数なるものについて質問です。 ====問題==== P_X(C)=∫_C e^-xdx (但しC={x;0<x<∞})を確率変数Xの確率集合関数とせよ。 C_k={x;2-1/k<x≦3},(k=1,2,3,…)とする時,lim[k→∞]C_kとP_X(lim[k→∞]C_k)を 求めよ。 P_X(C_k)とlim[k→∞]P_X(C_k)=P_X(lim[k→∞]C_k)を求めよ。 ============= lim[k→∞]C_k={x;2<x≦3} P_X(lim[k→∞]C_k)=∫[2~3]e^-xdx=[-e^-x]^3_2=-e^-3+e^-2 P_X(C_k)=∫[2-1/k~3]e^-xdx=[-e^-x]^3_(2-1/k)=-e^-3+e^(1/k-2) と解いてみたのですが正しいでしょうか? あと、lim[k→∞]P_X(C_k)=P_X(lim[k→∞]C_k)はどうやって求めればいいのでしょうか? 因みに確率集合関数なるものは調べてみましたら 「関数Pが、次の3つの公理を満たす時、確率集合関数と呼ぶ。すなわち基礎空間Ωの 部分集合Eに対する3つの条件が確率の公理である。 (1)P(E)≧0 (2)P(Ω)=1 (3)P(E_1UE_2UE_3・・・)=P(E_1)+P(E_2)+P(E_3)+・・・ ただし、ここでE_1,E_2,E_3,・・・は互いに排反な事象である。すなわち任意のi≠jに 対して、E_i∩E_j=空集合φである」 というものです。