• 締切済み

結晶中のキャリア濃度と化学ポテンシャル

金属や半導体においてキャリア濃度(n型半導体の場合は電子濃度、p型の場合は正孔濃度)が変化すると化学ポテンシャル(フェルミ準位)はどのように変化しますか。また出来れば定性的にその理由や過程も教えてもらえると分かりやすくて助かります。 フェルミ準位付近の状態密度などバンド構造の話でも良いのでよろしくお願いします。

みんなの回答

回答No.1

小さな分子は分子軌道によりその電子状態を考える。無限個とみなせる多くの数の原子が集合した固体の電子状態は、無数の分子軌道からつくられるエネルギーバンドを用いて表される。 絶縁体は電子が完全に詰まったバンドと電子の入っていないバンド間に広いエネルギーギャップが存在している物質で、電子がバンド内に束縛されているから自由に移動できる電子が存在せず電気が流れない。 エネルギーギャップが小さくなると下の電子が詰まったバンドから、電子の若干数が熱エネルギーによって上の空バンドに移るようになり、この伝導帯に入った電子と、それが抜けた後の正孔によって電気伝導性を示すようになる。 この半導体では、温度が上昇すると伝導帯に入る電子の数が増えるから電気伝導率が上昇が増加する。 電子を増やすタイプはキャリヤーが負電荷であるために、n型半導体、電子を減らすタイプはキャリヤーが正孔となるから、p型半導体。

関連するQ&A

  • 不純物半導体の真空準位について

    いまさらの質問なのですが、、 P型半導体とN型半導体を接合するとバンドが曲がりますよね? フェルミ準位を合わせるようにキャリアが移動するためなのは理解できます。 そうすると、外部電界が印加されていない状態では、真空準位からフェルミ準位までのエネルギーは変わらないと思いますので、P型とN型では真空準位から伝導帯端までのエネルギーが異なるということでしょうか? この理解は合っていますか?だとするとそれは何故なのでしょうか?同じSiの結晶構造なのに、ポテンシャルがずれるのでしょうか?

  • 真性半導体のフェルミ準位について

    はじめまして。自分は今学生で半導体の勉強をしています。 さっそく質問させていただきます。 今、真性半導体のフェルミ準位を求めるところをやっています。 教科書には温度一定のときキャリアの有効質量の違いによってフェルミ準位がバンドギャップの中央からずれると書いてありますが、私の使用している教科書では計算の結果しか書いておらず、そのことについての議論がされてなくてよくわかりません。 計算結果だけみれば確かにそうなるらしいのはわかるのですが、誰か定性的に説明できる方がいましたら教えていただけないでしょうか?

  • キャリア濃度

    P型もしくは、n型半導体に磁場と電流を流せばホール効果が起こり、キャリア濃度を求めることができますが、電流を流したり磁場をかけることによってキャリア濃度は変化しないのですか? キャリア濃度は温度にのみ依存するのでしょうか?

  • 半導体に関する質問です。

    金属と半導体の接触において、p型半導体と金属のオーミック接触の原理が理解できません。n型半導体と金属のオーミック接触は理解できたのですが、p型になるとわかりません。n型の場合は、電子の動きを考えればいいので、金属からn型半導体に電子が動いて、フェルミン準位が増加するので、バンド図で、フェルミン準位が上がるのがわかります。ただp型の場合は、正孔を考えなければなりません。ただ、金属は電子しか移動しないので、どのように金属と半導体の間の正孔のやりとりを考えたらいいのでしょうか?金属から半導体へ、または半導体から金属へ、正孔が移動すると考えられるのでしょうか?参考書などを見ると、「n型と同様に考えると」っとしか書いておらず、私には理解できません。すいませんが、教えてください。お願いします。

  • P形半導体の正孔密度と温度の関連性について

    半導体(外因性半導体)に関して、キャリア密度の温度特性について勉強しています。 n形半導体の電子密度と温度の関係においては、低音から温度を上げていくと3領域からそれぞれ密度の上昇率が変化するということは理解できたのですが、 これがP形半導体と正孔密度に関する事となると、正孔がそもそも仮想的な概念ということからうまく説明がつかなくなってしまいます。 この正孔密度の場合についてもやはり温度帯域によって密度は変化するのでしょうか? どなたかP形半導体の正孔密度と温度依存性に関してご教授して頂けると助かります。

  • 真性キャリア濃度について

    真性キャリア濃度について n:電子濃度 p:正孔濃度 kB:ボルツマン定数 T:絶対温度 h:プランク定数 me*:電子の有効質量 mh*:正孔の有効質量 Nc:伝導帯の有効状態密度 Nv:価電子帯の有効状態密度 Ec:伝導帯の底のエネルギー? Ev;価電子帯の一番上のエネルギー? Ef:フェルミエネルギー ni:真性キャリア濃度(np) Eg:バンドギャップ n=Nc*exp[-(Ec-Ef)/(kBT)] Nc=2((2πme*kBT)/h^2)^(3/2) p=Nv*exp[(Ev-Ef)/kBT] Nv=2((2πmh*kBT)/h^2)^(3/2) np=NcNv*exp[(Ev-Ec)/kBT] =NcNv*exp(-Eg/(kBT)]=ni^2=const ni=√(NcNv)*exp[-Eg/(2kBT)] niの式によって、電子の数が多い時と少ない時と正孔の数が多い時と少ない時とを計算できるそうですが、NcやNvやexp[-Eg/(2kBT)]のどこに電子の数や正孔の数が分る要因があるんでしょうか? niは熱平衡状態の時にしか成り立たないから、温度は一定ですし、バンドギャップも一定でしょう。 そしたら、どうやって電子の数が多いとか少ないとかは判断できるんですか?

  • バンドの歪み?(バンドベンディング、バンド曲がり)

    半導体表面で、バンドが歪むということがどういうことか理解できません。 n型半導体で、正に電荷を帯びた不純物が表面にある場合、クーロンポテンシャルが遮蔽されて、バンドは下に曲がり、伝導体はフェルミ準位に近づくっていう説明があるんですが、さっぱり分かりません。どういうことなんでしょうか。ご存知の方、教えて下さい。

  • 半導体工学の問題が分かりません

    半導体工学の問題が分かりません 問題は以下の通りのものです。 1.真性Siに不純物を添加して、導電率が5S/cmのp形と抵抗率が2Ωcmのn形不純物半導体を作りたい  ただし、温度は室温、真性キャリア密度は1.5×10^10/cm^3、  電子及び正孔移動度は1500cm^2/Vs,500cm^2/Vsとする (1)添加すべき不純物密度はそれぞれいくらか (2)p形、n形半導体のフェルミ準位は、真性フェルミ準位を基準にそれぞれどの位置にあるか (3)拡散電位はどれだけか (4)p形での電子の寿命が1μs,拡散定数が10cm^2/s,n形での正孔の寿命が0.1μs,拡散定数が3cm^2/s   であるとき、電子及び正孔によって運ばれる逆方向電流密度はどれだけか (5)このダイオードに0.3Vの順バイアスを加えたとき、流れる電流はどれだけか   ただし、接合の断面積は0.3mm^2とする というものです。一応やってみましたが問題から拡散長しか求められません おねがいします。

  • 量子井戸構造でのキャリア密度分布・電流密度分布

    半導体の量子井戸構造において定量的にキャリア密度分布・電流密度分布を評価したいのですが、どのようにして計算すればよいのでしょうか。 バンドギャップの大きな材料p・n型でバンドギャップの小さな材料で挟んだ場合、順方向に電圧をかけると、閉じ込め効果によりバンドギャップの小さな部分に電子・正孔が蓄積されるということですが、そのときの電子・正孔の密度の分布、電流密度分布はどうやって出すのでしょうか。ただのpn接合までならわかるのですが、活性層が入ることによってどう考えればいいのかわからなくなってしまいます。 大体の流れを教えていただけないでしょうか? またよかったらそのようなことに詳しい本など紹介してもらえないでしょうか? よろしくお願いします

  • 静電ポテンシャルと真性フェルミ準位の関係

    pn接合やMIS構造を議論する時にポアソンの方程式を立ててバンドの曲がりなどを解析しますが、何故静電ポテンシャルΦに-qをかけると真性フェルミ準位E_iになるのですか?  MIS構造でバンド構造を考えると、-qΦは半導体と絶縁体の境界で連続ですが、絶縁体の伝導帯と半導体の伝導帯が不連続であったのでふと疑問に思いました。  まとめると電磁気学で定義される電位Φと別に半導体の議論の途中で出てきたE_iが           E_i=-qΦ の関係式で結びつける事ができるのは何故か? という質問内容です。