• 締切済み

dz/√(1-z^2)(1-k^2z^2)は正則か

dz/√(1-z^2)(1-k^2z^2)は極をもたない(正則)であることを証明せよ。 (z=±1,±1/kも極でない) という問題があったのですが,どうか教えていただけないでしょうか? これを使うか分からないですが参考程度に写真あげておきます

みんなの回答

  • jcpmutura
  • ベストアンサー率84% (311/366)
回答No.1

dz/√(1-z^2)(1-k^2z^2) の意味が不明ですが, ∫dz/√(1-z^2)(1-k^2z^2) という不定積分の意味ならば z=±1,±1/k は極ではないけれども、 ∫dz/√(1-z^2)(1-k^2z^2) を微分すると 1/√(1-z^2)(1-k^2z^2) となって z=±1,±1/k で微分不可能なので、正則ではありません。 極を持たないだけでは正則とはいえません 極をもたなくて 微分可能な時 正則といいます

関連するQ&A

  • ∫(c,(z+1)/z(z-i)^2)dzの値を求めよ。

    識者の皆様宜しくお願い致します。 下記の問題を解いているのですが自信がいまひとつです。 このようなとき方でいいでしょうか? [問]Cが円|z-i=1/2で反時計回りの向きとする時、∫(c,(z+1)/z(z-i)^2)dzの値を求めよ。 [解] f(z)=z^(-1)(z+1)(z-i)^(-2)において、単純閉曲線|z-i|=1/2の内部ではz=iのみで特異点(つまり、孤立特異点)を持ち、iが2位の極となる。 (∵『f(z)={Σ(k=1..n,(z-ak)^sk}/{Σ(k=1..m,(z-bk)^tk} (但し、a1,a2,…,anは複素数。b1,b2,…,bmは相異なる複素数。s1,s2,…,sn,t1,t2,…,mkは自然数)とする時、bk(k=1,2,…,m)は孤立特異点となり、bkをtk位の極という』) よって ∫(c,(z+1)/z(z-i)^2)dz=2πiRes(i,f) (∵『「留数定理」f(z)は単純閉曲線Cの内部に孤立特異点z1,z2,…,znを持つ他はCの内部と周を込めて正則とする。この時、∫(c,f(z)dz=2πiΣ(j=i..n,Res(zj,f))』) =2πi・lim(z→i,d/dz{(z-i)^2(z+1)/(z(z-i)^2)}) (∵z0がk位の極の時、Res(z0,f)=1/(k-1)!lim(z→z0,d^(k-1)/dz^(k-1)((z-z0)^k)f(z)) =2πi・lim(z→i,d/dz{(z+1)/z}) =2πi・lim(z→i,-1/z^2) =2πi・1 =2πi

  • zバー(zの平均)が正則でないことを証明せよという

    zバー(zの平均)が正則でないことを証明せよという問題があったのですが、教えてもらえないでしょうか?

  • 全複素平面上で正則な関数f(z)は

    全複素平面上で正則な関数f(z)は lim_[r→0] ∫_Cr f(z) dz = 0 を満たすことを示せ。ただし、Cr = { r*exp(iθ) | 0≦θ≦π } (r>0の上半円周) 考えた証明の方針: 単純閉曲線C:= Cr + Cr' (ただし、Cr': = { x | -r≦θ≦r } )と定め、 まず、コーシーの積分公式を証明。すなわち、∫_C f(z) dz = 0 次に、∫_C f(z) dz = 0 に r→0として題意を示すと思いました。 しかし、∫_-r^r f(z)dz =0になることが言えなくて、つまづいています…。 どなたか知恵を貸してください。

  • 正則性について。

    --------------------------------------------------- f(z)=1/(bar(z)) z = x + iy とし z ≠ 0においてf(z)が正則であるかどうか判定せよ。 また、 R>0に対して複素積分 ∫_[|z|=R]f(z)dz の値を求めよ --------------------------------------------------- という問題なのですが、 u=x/x^2+y^2, v=u/x^2+y^2とすると、 ∂u/∂x = y^2-x^2/(x^2+y^2)^2 ∂v/∂y = x^2-y^2/(x^2+y^2)^2 となり、コーシー・リーマンの判定式を用いると、 ∂u/∂x≠∂v/∂yとなり、条件を満たさないので、 f(z)は正則ではないという結果が出ます。 f(z)が正則ではないのは、(bar(z))=0で特異点を持つためだと思うのですがこの問題の場合、z≠0で除外されていますよね? この場合、正則なのでしょうか? おそらく、特異点の捉え方がよくわかっていないのだと思います。 また、 次の問題はコーシーの積分公式で求めると思うのですが、 この公式は、bar(z)の場合にもそのまま当てはめてよいのでしょうか? ご指導ご鞭撻の程、宜しくお願い致します。

  • 複素微分の存在→正則の証明

    複素関数fの複素微分が存在するなら、その関数は正則であるということを証明するプロセスは複素関数論の教科書にはすべて載っていると思います。 私の本では複素微分df/dzにおいてdz=h+ikとして、k=0でh→0としたものと、h=0としてk→0としたものが一致しなければならないということから正則であることを誘導しています。複素微分による2つの特殊な例を適用したように見えるのですが、これで演繹的に証明したことになるのでしょうか。 これに関連して、正則とはコーシーリーマンの関係が成立することであり、それが正則の定義と考えていいのでしょうか。つまり正則ならコーシーリーマンの関係式が成立することを証明せよ、というようなことはないと思っていいでしょうか。 なお、正則→複素微分の存在という証明が別途出てきますが、こちらは平均値の定理とコーシーリーマンの式で演繹的に証明できたような印象なのですが。

  • ∫1/(z-1)dz C:|z|=1 の求め方

    次のように考えてみました。 z=1は不正則点であるので、z=cosθ+isinθ (0<θ<2π)とおき、 ∫1/(z-1)dz =∫[0→2π]1/(cosθ+isinθ-1)dz/dθdθ =∫[0→2π](-sinθ+icosθ)/(cosθ+isinθ-1)dθ =∫[0→2π]i(cosθ+isinθ)/(cosθ+isinθ-1)dθ =∫[0→2π]i(cosθ+isinθ){cosθ-(isinθ-1)}/(cosθ+isinθ-1){cosθ-(isinθ-1)}dθ =∫[0→2π]i{(cosθ)^2-isinθcosθ+cosθ+isinθcosθ+(sinθ)^2+isinθ}/{(cosθ)^2-(isinθ-1)^2}dθ =∫[0→2π](1+isinθ+cosθ)/2sinθdθ =1/2∫[0→2π]1/sinθdθ+i/2∫[0→2π]dθ+1/2∫[0→2π]cosθ/sinθdθ =1/2[log|tanθ/2|][0→2π]+i/2[θ][0→2π]+1/2[log|sinθ|][0→2π] =πi 以上のような考え方でよろしいのでしょうか?宜しくお願い致します。

  • log(1-z)が正則か分からなくて困っています。

    ∫の|z|=r (r<1){log(1-z)}/zを計算せよ、という問題です。そこでコーシーの積分定理を使おうとしたのですが、log(1-z)の分枝切断をどうとるのかよくわからなかったりして、正則かどうかわからず、質問しました。 詳しく回答して頂けるとありがたいです。

  • [問]∫_C exp(-2πz)dzの値を求めよ

    曲線Cを図の通りとする。 積分路変形の原理 「複素関数f(z)が単連結領域Dで正則ならば,D内の任意の2点α,βを結ぶ曲線Cに沿った ∫_C f(z)dzは積分路Cの採り方によらず,常に一定の値を採る」 [問]∫_C exp(-2πz)dz, where C is the contour. という積分を求める問題です。 Cよりも簡単な直線C_1:z_1(t):=πt-it+i (但し,0≦t≦1)とするとdz_1(t)/dt=π-iなので ∫_C exp(-2πz)dz=∫_C exp(-2πz_1)dz_1 (∵複素平面は単連結で複素平面上の任意の点zに於いて関数exp(-2πz)は正則。 よって,積分路変形の原理が使える) =∫_0^1 exp(-2πz_1(t))dz_1(t)/dt・dt =∫_0^1 exp(-2πz_1(t))(π-i)dt =∫_0^1 πexp((-2π^2+2πi)t-2πi)-iexp((-2π^2+2πi)t-2πi))dt =π/(-2π^2+2πi)[exp(-2π^2+2πi)t-2πi)]_0^1-i/(-2π^2+2πi)[exp(-2π^2+2πi)t-2πi)]_0^1 =(π-i)/(-2π^2+2πi) ・exp(-2π^2)-exp(-2πi) となったのですがこれで正しいでしょうか?

  • 正則関数

    C:z(t)=e^(it) (0≦t≦2π)に対して ∫[C] z^k dzの解法を教えてください。 また∫[C] z^k |dz|の解き方も教えてください。

  • Cr(a)を中心a、半径rの円の内部、γをその円周とするφ(z)をγ上

    Cr(a)を中心a、半径rの円の内部、γをその円周とするφ(z)をγ上で連続な関数とし、ζ∈Cr(a)に対し、f(ζ)=∫_(γ) φ(Z)/(Z-ζ)dzとおけば、f(ζ)はCr(a)において正則な関数で、 f'(ζ)=∫_(γ) φ(Z)/(Z-ζ)~2 dzとなることの証明で、等式1 /(z-ζ-Δζ) - 1/(z-ζ) = Δζ /(z-ζ-Δζ)(z-ζ) まで分かるんですが・・・ {f(ζ+Δζ)}-{f(ζ)}/Δζ - ∫_γ {φ(z)}/{(z-ζ)^2}dz=Δζ*∫_γ{(z-ζ-Δζ)(z-ζ)^2}/φ(z)dz・・・(*)が得られる。 0<p<rを固定。z∈γ;ζ,ζ+Δζ∈Cp(a)ならば、|z-ζ|,|z-ζ-Δζ|>r-pとなり、|φ(z)|(z∈γ)は有界。よって、ある(ζ、Δζに無関係な)正定数kがあって、式(*)の右辺の絶対値は≦k|Δζ|である。よってf(ζ)はCr(a)において正則で、f'(ζ)=∫_γ{φ(z)}/{(z-ζ)^2}dzが成立する。 からが分かりません!! 細かい解説、よろしくお願いします(/_;)