自然数と有理数の対角線論法と無矛盾性の探求

このQ&Aのポイント
  • 自然数と有理数(循環小数)を1対1対応させる対角線論法を考え、無矛盾性を探求します。
  • 自然数を1から始め、有理数の一部を2進数表記に変換して対応付けを行います。
  • 対角線論法で生成した2進数は0.010101010101...となりますが、一部の有理数が欠落しています。
回答を見る
  • ベストアンサー

自然数と小数を1対1対応で対角線論法し無矛盾したい

自然数と有理数(循環小数)を1対1対応をつけて、対角線論法して無矛盾したいです。 自然数を1から始めることにします。 斜めに拾った数字で数を作ります。 有理数は循環小数なので、0.1010101・・・を0⇔1変換すると 0.0101010・・・になるのでは?が基本アイデアです。 自然数と有理数(循環小数)の一部を2進数表記にして 対応付けを作ります。 リスト1 1:11/12 =0.916666666・・・は2進数表記で  0.1110101010101… 2:8 /12 =0.666666666・・・は2進数表記で  0.1010101010101… 3:11/48 =0.229166666・・・は2進数表記で  0.0011101010101… 4:8 /48 =0.166666666・・・は2進数表記で  0.0010101010101… 5:11/192=0.057291666・・・は2進数表記で  0.0000111010101… 6:8 /192=0.416666666・・・は2進数表記で  0.0000101010101… 7:11/768=0.014322916・・・は2進数表記で  0.0000001110101… 8:8 /768=0.010416666・・・は2進数表記で  0.0000001010101… . n:11/3*2^(n+1){nは奇数}は2進数表記で 0.(0がn-1個続いて)11101010101… n:8 /3*2^(n ){nは偶数}は2進数表記で 0.(0がn-2個続いて)10101010101… . . 1つ目の有理数(循環小数)の小数1桁目を0⇔1反転し、 nつ目の有理数のn桁目を0⇔1反転して 対角線論法で作った2進数は0.010101010101…です。 でもリスト1に数がないです。 2つ目と3つ目の間に0.0101010101010…を入れると、 対角線論法で作った2進数が変わってしまい、うまくいきませんでした。 しょうがないので一桁づらしてリスト2を作ります。 リスト2 1:11/24 =0.4583333333・・・は2進数表記で  0.0111010101010… 2:8 /24 =0.3333333333・・・は2進数表記で  0.0101010101010… 3:11/96 =0.1145833333・・・は2進数表記で  0.0001110101010… 4:8 /96 =0.0833333333・・・は2進数表記で  0.0001010101010… 5:11/384 =0.0286458333・・・は2進数表記で  0.0000011101010… 6:8 /384 =0.0208333333・・・は2進数表記で  0.0000010101010… 7:11/1536=0.0071614583・・・は2進数表記で  0.0000000111010… 8:8 /1536=0.0052083333・・・は2進数表記で  0.0000000101010… . n:11/3*2^(n ){nは奇数}は2進数表記で 0.(0がn-1個続いて)01110101010… n:8 /3*2^(n+1){nは偶数}は2進数表記で 0.(0がn-2個続いて)01010101010… となって、リスト2の2つ目にリスト1から対角線論法で作った数が出てきます。 なんとなく自然数と有理数の一部が対応したような感じがします。 リスト1とリスト2個別にみれば 単調増加なので同じ有理数に、違う自然数が対応してるような 感じがします。 ・基本的に誤りでしょうか? ・リストが2つに分かれちゃいましたが1つにまとめられますか? ・有理数全体の有限小数でつまり、循環のパターン110とか001とか がたくさんあっても対角線論法で、無矛盾するためには どうすればよいでしょうか?

質問者が選んだベストアンサー

  • ベストアンサー
noname#221368
noname#221368
回答No.2

 質問の意図を誤解してるかも知れませんが、いちおう自分の意見を書いてみます。  まず2進表現を使う事は本質的でないと思いますので、以下では小数と言ったら10進表現です。  有理数は分数で考えると、2次元平面の格子点全てとほぼ等価です(Z^2とほぼ等価。Z:整数全体の集合)。実際に2次元平面の格子点を1,2,3,4,・・・と数えて全ての格子点を拾う方法は、ご存じと思います。  そうすると全単射なf:N→Q(N:自然数全体の集合,Q:有理数全体の集合)は具体的に与える事が可能です。従ってfを用いれば、リストを作る手順を具体的に与え得るのも当然となります。ここでリストの有理数を10進小数にするか、2進表現にするかは副次的な事です。とにかく有理数全部を自然数によって番号付けする手順は、本当に具体的に記述できる訳ですから。  引っかかり所は(問題は)、そうやって作ったリストに対しても、対角線論法の論理はあい変らず有効だという点だと思ったのですが。  対角線に沿って数字をずらしていって得た実数αは、確かにリストに含まれるものではありません。含まれるとしたら矛盾します。だからそれは有理数ではない実数です。  つまりそうやって得た実数αに対してやるべき事は、αが無理数である事の証明だと思うんです。少なくとも自分はそれを、構成的には行えませんが。  まかり間違って実数αが有理数だという証明が出来てしまったら、今度はリストの作成法が検討すべき事になります。NとQの真部分集合との間にも、いくらでも全単射は定義できますから。N→[Nの偶数全体の集合]、・・・みたいに。つまりリストは、有理数全体を尽くしていなかったんだ、と考えるべきだと思います。

sunabo
質問者

お礼

回答ありがとうございます。 また、質問の意図を理解していただいてありがとうございます。 私も、有理数全体を尽くしていなかったんだとおもいます。 自然数と有理数の対応をいい感じにつけないと、対角線論法で作った新しい数が 何がなんだかわからない数になります。 そんなわけで尽くすのはやめて、とりあえず、 01のくりかえしタイプの一部と10のくりかえしタイプの一部に絞って つじつまを合わせてみました。 私の やりかたはだいたいあってるのかなぁ? という質問に対して だいたいあってるよ が回答だと了解しました。うれしいです。 残る質問は ・もっとうまい方法があるのかなぁ? といったところです。 ・対角線に沿って数字をずらしていって得た実数α は私の意図と違います。 ・対角線に沿って数字をずらしていって得た有理数がリストにあってほしい が私の意図です。 とりあえず対角線に沿って数字をずらしていって得た数は有理数でした。 でもリストになくてしようがなくなってしまいました。 まあ、いっか、とリスト2をつくってつじつまをあわせてみました。 私は、 質問とは別の、 もともとの(実数が自然数より濃度がすごいことを示す)対角線論法 は自然数と実数を対応付けてみたけれども・・・ だと思っています。 まちがってたらむなしいなぁ。 回答者様は もともとの対角線論法は 自然数と有理数を対応付けてみたけれども・・・ と思われているかもしれません。さしでがましいようです。 以上です。

sunabo
質問者

補足

質問者です。やはり、私が差し出がましかったでした。 回答者様は対角線論法が有理数で閉じてないって言ってました。 実数に対角線論法すると、実数が出る。 有理数に対角線論法すると、実数(有理数だけじゃない)が出る。 はみでないとき 自然数を加法すると自然数が出ます。 はみでるとき 自然数を減法すると整数(自然数と負の数)が出ます。 自然数を除法すると有理数(自然数と有限小数と循環小数)が出ます。 有理数を対角線論法すると実数がでる。はみでるんですなたぶん。 有限2桁の小数に対角線論法すると、有限2桁が出ます。 1:0.11 2:0.10 3:0.01 4:0.00 対角線論法=0.01リストの3番目にある。 下記3点を納得するとすっきりしそうです。 ・無限桁に対角線論法すると無限桁の小数がでます。 ・その小数はリストにない。 ・その小数は数字を無限個選んで、なんかうまいぐあいに循環小数になると考えられない(回答者様は構成的にこれを行えないけど、もしかしたらできる人もいるかもねといっています。) 的を得た回答でした。 重ねて申し上げます。ありがとうございました。 ベストアンサーにします。

その他の回答 (1)

  • chie65535
  • ベストアンサー率43% (8518/19363)
回答No.1

基数(底)が異なると、循環小数も異なる。 例えば「10進数で0.3333333…」は「3/(10-1)」だし「8進数で0.3333333…」は「3/(8-1)」になる。 10進数で0.235235235235…は235/(1000-1)になる。つまり、235/(10の3乗ー1)になる。 8進数で0.235235235235…は235/(512-1)になる。つまり、235/(8の3乗ー1)になる。 2進数で0.101010101010…は2/(4-1)になる。つまり、2/(2の2乗-1)になる。 2進数で0.010101010101…は1/(4-1)になる。つまり、1/(2の2乗ー1)になる。 2進数で0.100100100100…は4/(8-1)になる。つまり、4/2の3乗ー1)になる。 従って「10進数で循環小数になったからといって、同じ値が、他の進数で循環小数になるとは限らない」のである。 例えば「10進数の0.2」は」10進数では循環小数ではない」が「2進数では循環小数」になる。 循環小数になる値とは「分母が進数の基数のN乗ー1、の分数で表される数を含む数」である。 10進数なら、分母が「9」や「99」や「999」になった分数は、循環小数になる。 2進数なら、分母が「1(2進)」や「11(2進)」や「111(2進)」になった分数は、循環小数になる。 10進数の「0.2」は、分数にすると「1/5」であるが「3/15」とも書ける。 分母の「15」は「4の2乗ー1」であり「2の4乗ー1」であるので、この値は「4進数にした時」と「2進数にした時」に「循環小数」となる。 実際、10進の0.2は、4進数では0.333333333…であるし、2進数では0.001100110011…である。 従って、質問者さんが作ったリスト1もリスト2も、何の意味も持たない。

sunabo
質問者

お礼

回答ありがとうございます。 指摘は、 ・1つの有理数がn進法表記のちがいで、循環小数になったりならなかったりする ・循環小数になる1つの条件は、分母がn進法のn^a-1、の既約分数で表される数 ・循環小数のすべてをリストに出し尽くしてないから意味がない ですね。 了解できたと思います。

関連するQ&A

  • 対角線論法(?)について

    オートマトン言語理論計算論I(サイエンス社)という本の第7、8ページに すべての無限集合が等しい濃度を持つわけではない例として、 「整数全体の集合と実数全体の集合について考えてみよう。仮に、実数の 全体が正整数と1対1に対応づけられたとする。そのとき、各 i=1,2,3,… について小数点以下 i 桁目が、第 i 番目の実数(上の対応で正整数 i に 対応づけられた実数)の小数点以下 i 桁目の数字に法10のもとで5を加え た数であるような実数を考える。するとこれは上で正整数と対応づけられた どの実数とも異なる数である。このことから、実数全体と正整数を1対1に 対応づけることがそもそも不可能だったことがわかる。」 とあり、この議論が対角線論法と呼ばれるそうですが、何度読んでもさっぱ り理解できないのです。 特に 「そのとき、各 i=1,2,3,…について小数点以下 i 桁目が、第 i 番目の実数 (上の対応で正整数 i に対応づけられた実数)の小数点以下 i 桁目の数字に 法10のもとで5を加えた数であるような実数を考える」 がイメージできないのです。 もし対角線論法について理解されてる方がいらっしゃいましたら、是非とも ご教授願いませんでしょうか? よろしくお願いします。

  • 対角線論法 10進数展開

    対角線論法を用いて、自然数全体の集合と[0,1]区間の間には全単射な写像は定められないということを示す証明を読んでいて疑問に思ったのですが、 循環しない少数は10進数展開が一意には定まらない(例えば、2/5=0.400…=0.399…)のに、なぜ「実数a,bに対して、a,bの少数第n位が異なればa,bが異なる」というようなことができるのでしょうか? あと、循環しない少数ではない実数(1/3とか√2とかπとか)の10進数展開は一意に定まると思うのですが、その証明が考えてもわかりません。知っている方がいたら教えてもらえないでしょうか? 最後に、10進展開についても疑問があるのですが、 「実数aが10進展開できる」とはどういうことなのでしょうか? これは、An=k(n)/(10^n) (ただし0≦k(n)≦9)という数列の級数がaと一致する。すなわち、級数の部分和がaに収束する ということなのでしょうか? それとも、 {ΣAn}⊂Map({整数},{有理数})という集合(今度はAnのnは整数にすることにします。雰囲気的にはΣはローラン展開のΣに近いと思います。あと、-9≦k(n)≦9ということにします。)に自然に和を定義し、積を(小学校のときの筆算を自然に拡張する意味で)自然に定義します。そのとき{ΣAn}が体をなすことを示し、{実数全体}と{ΣAn}が同型であるとき、実数aに対応する{ΣAn}の元をaの10進展開と呼ぶのでしょうか? 以上です。よろしくお願いします。

  • Cantorの対角線論法を用いる証明

    自然数全体の集合Nと、集合Nから集合{0,1}への写像すべてからなる集合Xの濃度が等しいことを証明するのに、Cantorの対角線論法をどのように用いればよいのですか?

  • 実数と自然数は同じ個数なのではないでしょうか?

    すべての自然数とすべての実数を1対1で対応させる(すべての実数を一列に並べる)方法を考えました。間違いがあれば教えてください。 *方法1*「後出し」は実数の専売特許にあらず まず、すべての自然数と、異なる実数を無限に並べたもの、とを対応させるのだが、それは、異なる実数を無限に並べた「第一列」の「一番目」の実数を「1・1」とすると、 1→1・1 2→1・2 3→1・3 ・ ・ ・ と表すことができる。これはいわゆる「すべての自然数とすべての実数を1対1に対応させたと仮定したもの」であり、対角線論法によってこの表には存在しない実数を作れることから、仮定は間違い=「実数は自然数より多い」という結論になるのが従来の話である。しかしこれは、自然数を対応させる対象を「第一列」に限定したことによる間違った結論だ。 対角線上の数字のずらし方は、すべて一つずらす1111…の他に、1211…,1234…,2624…と無限にあるので、一つの対角線から、「第一列」には存在しない実数を無限に生み出すことができる。対角線論法によって生み出された無限の実数を並べた「第二列」に自然数を対応させることができなければ先の結論は正しいことになるが、そんなことは全然なく、「第二列」の「一番目」の実数を「2・1」とすると、 1→1・1 2→2・1 3→1・2 4→2・2 5→1・3 6→2・3 ・ ・ ・ のように、始めの、自然数と「第一列」の対応を解消した後、あらためて自然数を、「第一列」と「第二列」に、交互に対応させればいいだけの話なのだ。で、これは、「第一列」と「第二列」を合わせて「新たな第一列」にした(=始めの状態にリセットした)ということであり、この「新たな第一列=N1」の対角線から、対角線論法によって「新たな第二列=N2」が生まれるので、そしたらまたそれまでの対応を解消して 1→N1・1 2→N2・1 3→N1・2 4→N2・2 5→N1・3 6→N2・3 ・ ・ ・ と、自然数を「新たな第一列」と「新たな第二列」に交互に対応させ、これを無限に繰り返せばいいのである。自然数を、「新たな第二列」の実数に、無限に対応させ続けることができるということは、すなわち両者の個数は同じということなのである。 それにしても、無限に生み出される「新たな第一列」と「新たな第二列」は合わせて「新たな第一列」にできるのに、なぜ始めから一列に並べることができないのか。 方法1を別の言い方でまとめると、まず 1→1・1 2→1・2 3→1・3 ・ ・ ・ のように、すべての自然数と、異なる実数を無限に並べたもの、とを対応させるところから始めて、次に 1→1・1 2→  ←2・1 3→1・2 4→  ←2・2 5→1・3 6→  ←2・3 ・ ・ ・ と、「第二列」の実数を「第一列」に割り込ませて、始めの、すべての自然数と、異なる実数を無限に並べたもの、とを対応させた状態 1→1・1 2→2・1 3→1・2 4→2・2 5→1・3 6→2・3 ・ ・ ・ ↓ 1→1・1(1・1) 2→1・2(2・1) 3→1・3(1・2) 4→1・4(2・2) 5→1・5(1・3) 6→1・6(2・3) ・ ・ ・ にリセットして、そしたらまた 1→1・1 2→  ←2・1 3→1・2 4→  ←2・2 5→1・3 6→  ←2・3 ・ ・ ・ と、「第二列」の実数を「第一列」に割り込ませて…とこれを無限に繰り返す、といった具合に説明することができる。 *方法2*実数を整列させる 方法1は「動的な対応」とでも言うべきものであり、できれば「静的な対応」が望ましいわけで、そのためには実数を整列させる必要があるのだが、以下のようなやり方ではだめなのか。 まず 1→0.1 2→0.2 ・ ・ ・ 9→0.9 10→0.01 11→0.11 12→0.21 ・ ・ ・ 99→0.99 100→0.001 101→0.101 102→0.201 ・ ・ ・ 9999→0.9999 10000→0.00001 10001→0.10001 10002→0.20001 ・ ・ ・ …835218→0.812538… …835219→0.912538… …835220→0.022538… ・ ・ ・ というように、すべての自然数と、0と1の間のすべての実数を、1対1に対応させる。右側が「0と1の間のすべての実数」であることに異論はあるだろうか。この列に存在しない(0と1の間の)実数は存在するのか。この列は、小数第一位の数字が1,2…9,0,1…9,0,1…となっているので、だいたいその値で推移しながら、実数が、0と1の間を無限に埋めていく形になっている。 例えば、小数点以下、一恒河沙の一恒河沙乗番目が2、一阿僧祇の一阿僧祇乗番目が3、一那由他の一那由他乗番目が4の 0.1…2…3…4… のような無理数について、この並びの途中までのものしかないとしたら、ではどこまでのものならあるのか。0.1…2か、0.1…2…3か、0.1…2…3…4か。実際には「途中まで」などということはなく、つまりこの列にこの無理数は存在し、この任意の無理数が存在するなら(0と1の間の)すべての無理数が存在するのである。で、この表は左右が対称的になっているから、右に無限小数が存在するなら左には無限桁の自然数が存在するのである。 有限桁の自然数を重複することなく無限に並べることができないのと同様に、有限小数を、重複することなく無限に並べることはできない。この列は0と1の間の実数を整列させたものであり、この列に存在しない(0と1の間の)実数は存在しない。 で、すべての実数を整列させると 0,0.1,0.2…0.9,0.01,0.11,0.21… 1,1.1,1.2…1.9,1.01,1.11,1.21… 2,2.1,2.2…2.9,2.01,2.11,2.21… ・ ・ ・ (0),-0.1,-0.2…-0.9,-0.01,-0.11… -1,-1.1,-1.2…-1.9,-1.01,-1.11… -2,-2.1,-2.2…-2.9,-2.01,-2.11… ・ ・ ・ となるので、すべての自然数とすべての実数を1対1に対応させると、 1→0 2→0.1 3→-0.1 4→1 5→-1 6→2 7→-2 8→1.1 9→-1.1 10→0.2 11→-0.2 12→0.3 13→-0.3 14→1.2 15→-1.2 16→2.1 17→-2.1 18→3 19→-3 ・ ・ ・ のようになる。 ところでそれでも従来の考えが正しい場合、循環小数と非循環小数の個数に差が出る本質的な原因、両者の違いは何なのか。明確な違いは「整数比で表せるか表せられないか」だが、循環小数と非循環小数をそれぞれ循環数列と非循環数列に置き換え(今問題にしているのは個数であり、小数点を取り除いても個数は変わらない)れば整数比は関係なくなるわけだし。単なる数字の組み合わせに過ぎない同じ無限数列でありながら、循環させないというだけで個数が多くなるというのは何とも妙な話である。

  • 自然数と偶数の一対一対応について

    自然数の中から小さい方から順番にn個取り出した集合をAとし、 正の偶数の中から小さい方から同様に、同じ数だけ取り出した集合をBとします (要は自然数と正の偶数の一対一対応です) A={1,2,3,4,5, ...n} B={2,4,6,8,10,...2n} (AとBは同じ数) ここで、あるnの時の"Aには存在しないBの要素(値)の数"を考えます n=1の時、1個 n=2の時、1個 n=3の時、2個 個数だけ上げていくと、 1,1,2,2,3,3,4,4,5,5,.....と続きます "Aには存在しないBの要素の数"は、nの数に対して単調増加しており、 全てのnにおいて、少なくとも1以上であるように見えます また、nが無限大になった時でも、"Aには存在しないBの要素の数"は1以上あるようにしか思えません nが無限の時、Aを自然数全体の集合、Bを正の偶数全体の集合と呼ぶとします。 nが無限の時でも、Aに含まれないBの要素が存在します。 言い換えれば、自然数(=A)ではない正の偶数が存在するということです。 (もしそうなら最大値の存在が示せそうな気がしますし、現時点で私はそれが正しいように思います) この考えで、どこか間違いがあれば教えてください

  • カントールの対角線論法についておしえてください。

      《無限集合にはその大きさの大小があるということ》  というカントールの定理をめぐる次の証明の仕方はマチガイではないでしょうか?  なるべく数式を使わずにおしえてくださるとありがたいです。 ▲ (哲学するサラリーマン:平行線が交わる点) ~~~~   http://blogs.dion.ne.jp/le_fou/archives/10216164.html  2.神の証明  (その後半部分)  ( a ) 次に、2つめの定理〔*--《無限集合にはその大きさの大小があるということ》--〕を見てみましょう。  ( b ) これもわかりやすい例を挙げて説明します。無理数全部の集合と自然数全部の集合とはどちらが大きいでしょうか。  ( c ) ここに(0と1の間の)すべての無理数がただ1つの列にリストアップされていると仮定します。例えば、   0.17643567……   0.23482435……   0.62346286……  ( d ) 次に、この無限列の各行に対応する各々の無理数と、1から始まる自然数とが次のような1対1対応を作ると仮定します。   1⇔0.17643567……   2⇔0.23482435……   3⇔0.62346286……  ( e ) ここで自然数1に対応する無理数から小数点以下1番目の位を取ります。次に自然数2に対応する無理数から2番目の位を取ります。これを続けていけば0.133……という無理数が得られます。  ( f ) この無理数の小数点以下の数字を各々勝手に変えます。このような操作によって例えば0.245……という無理数ができます。  ( g ) この数は、自然数1に対応する無理数とは小数以下1番目の位で違い、自然数2に対応する無理数とは2番目の位で違い……となり、自然数と1対1対応させたどの無理数とも異なっていることが明らかです。  ( h ) すなわち、無理数全部の集合は自然数全部の集合よりも濃度において大であることが示される訳です。  ~~~~~~~~  【Q‐1】 ( c )の《(0と1の間の)すべての無理数》というとき そのすべてがリストアップされうるのでしょうか? それは 無限――つまりこの場合 可能無限――であると見てよいか?  【Q‐2】 もし前項の無理数の集合が 無限であるならば ( d )の 1,2,3,・・・とやはり対応させられる自然数の数も無限になる。と捉えてよいか?  【Q‐3】 もしよければ ( f )に言うあらたに勝手に作った無理数(例えば0.245……)は もともとその無理数の集合の中にふくまれているものではないか?  【Q‐4】 言いかえると その無理数((例えば0.245……)も とうぜん自然数の無限の列挙と初めに対応していたはずではないか? なぜ( g )のような結論にみちびかれるのか?

  • 対角線論法による全単射有無の証明について

    以下、Wikipediaの対角線論法の項目です。 http://ja.wikipedia.org/wiki/%E3%82%AB%E3%83%B3%E3%83%88%E3%83%BC%E3%83%AB%E3%81%AE%E5%AF%BE%E8%A7%92%E7%B7%9A%E8%AB%96%E6%B3%95#.E8.87.AA.E7.84.B6.E6.95.B0.E3.81.AE.E9.9B.86.E5.90.88.E3.81.A8.5B0.2C_1.5D.E5.8C.BA.E9.96.93.E3.81.AE.E6.BF.83.E5.BA.A6.E3.81.AE.E9.81.95.E3.81.84 こちらをみていて思ったのですが、RをQ(有理数)と読み変えてもこの証明が可能なように思えてしまいます。はて、自然数は有理数に対して全単射のはず…。 (例えば、全ての有理数をp/qの形で表し、(p,q)なる数字の組み合わせとして番号付加すると、自然数と1対1対応できてしまいます。) Wikipediaの証明が、Q(有理数全体)では成り立たないことを教えてください。

  • 有理数を小数で表すと有限小数または循環小数になるのはなぜ??

    有理数を小数で表すと有限小数または循環小数になることを証明しなさい。 という問題が出されたのですが、誰かこれが分かる人いますか???......んーわからん!!

  • ε-n0論法を用いて、自然数のn乗が∞に発散することを示したいのですが

    ε-n0論法を用いて、自然数のn乗が∞に発散することを示したいのですがどうやったらいいですか?? 7のn乗を例に教えてください!

  • 自然数の構成

    あるサイトで自然数の勉強をしてると、つぎのようなことが書かれてました。 自然数とは、ペアノ公理をみたす集合の元である。 集合Nがペアノ公理を満たすとは、つぎを満たすことである。 Nは、0を含み、単射f:N→Nが存在して、 (1)f(N)は0を含まない (2) )Nの任意の部分集合をSとする。 0∈S、f(S)⊂S⇒S=N. と書いてあったのですが、このような集合Nは、存在することを証明できるのでしょうか? 仮に、自然数Nとしてf(n)=n+1とすればペアノ公理を満たすけど、これだと循環論法の気がします。