• ベストアンサー

実数と自然数は同じ個数なのではないでしょうか?

すべての自然数とすべての実数を1対1で対応させる(すべての実数を一列に並べる)方法を考えました。間違いがあれば教えてください。 *方法1*「後出し」は実数の専売特許にあらず まず、すべての自然数と、異なる実数を無限に並べたもの、とを対応させるのだが、それは、異なる実数を無限に並べた「第一列」の「一番目」の実数を「1・1」とすると、 1→1・1 2→1・2 3→1・3 ・ ・ ・ と表すことができる。これはいわゆる「すべての自然数とすべての実数を1対1に対応させたと仮定したもの」であり、対角線論法によってこの表には存在しない実数を作れることから、仮定は間違い=「実数は自然数より多い」という結論になるのが従来の話である。しかしこれは、自然数を対応させる対象を「第一列」に限定したことによる間違った結論だ。 対角線上の数字のずらし方は、すべて一つずらす1111…の他に、1211…,1234…,2624…と無限にあるので、一つの対角線から、「第一列」には存在しない実数を無限に生み出すことができる。対角線論法によって生み出された無限の実数を並べた「第二列」に自然数を対応させることができなければ先の結論は正しいことになるが、そんなことは全然なく、「第二列」の「一番目」の実数を「2・1」とすると、 1→1・1 2→2・1 3→1・2 4→2・2 5→1・3 6→2・3 ・ ・ ・ のように、始めの、自然数と「第一列」の対応を解消した後、あらためて自然数を、「第一列」と「第二列」に、交互に対応させればいいだけの話なのだ。で、これは、「第一列」と「第二列」を合わせて「新たな第一列」にした(=始めの状態にリセットした)ということであり、この「新たな第一列=N1」の対角線から、対角線論法によって「新たな第二列=N2」が生まれるので、そしたらまたそれまでの対応を解消して 1→N1・1 2→N2・1 3→N1・2 4→N2・2 5→N1・3 6→N2・3 ・ ・ ・ と、自然数を「新たな第一列」と「新たな第二列」に交互に対応させ、これを無限に繰り返せばいいのである。自然数を、「新たな第二列」の実数に、無限に対応させ続けることができるということは、すなわち両者の個数は同じということなのである。 それにしても、無限に生み出される「新たな第一列」と「新たな第二列」は合わせて「新たな第一列」にできるのに、なぜ始めから一列に並べることができないのか。 方法1を別の言い方でまとめると、まず 1→1・1 2→1・2 3→1・3 ・ ・ ・ のように、すべての自然数と、異なる実数を無限に並べたもの、とを対応させるところから始めて、次に 1→1・1 2→  ←2・1 3→1・2 4→  ←2・2 5→1・3 6→  ←2・3 ・ ・ ・ と、「第二列」の実数を「第一列」に割り込ませて、始めの、すべての自然数と、異なる実数を無限に並べたもの、とを対応させた状態 1→1・1 2→2・1 3→1・2 4→2・2 5→1・3 6→2・3 ・ ・ ・ ↓ 1→1・1(1・1) 2→1・2(2・1) 3→1・3(1・2) 4→1・4(2・2) 5→1・5(1・3) 6→1・6(2・3) ・ ・ ・ にリセットして、そしたらまた 1→1・1 2→  ←2・1 3→1・2 4→  ←2・2 5→1・3 6→  ←2・3 ・ ・ ・ と、「第二列」の実数を「第一列」に割り込ませて…とこれを無限に繰り返す、といった具合に説明することができる。 *方法2*実数を整列させる 方法1は「動的な対応」とでも言うべきものであり、できれば「静的な対応」が望ましいわけで、そのためには実数を整列させる必要があるのだが、以下のようなやり方ではだめなのか。 まず 1→0.1 2→0.2 ・ ・ ・ 9→0.9 10→0.01 11→0.11 12→0.21 ・ ・ ・ 99→0.99 100→0.001 101→0.101 102→0.201 ・ ・ ・ 9999→0.9999 10000→0.00001 10001→0.10001 10002→0.20001 ・ ・ ・ …835218→0.812538… …835219→0.912538… …835220→0.022538… ・ ・ ・ というように、すべての自然数と、0と1の間のすべての実数を、1対1に対応させる。右側が「0と1の間のすべての実数」であることに異論はあるだろうか。この列に存在しない(0と1の間の)実数は存在するのか。この列は、小数第一位の数字が1,2…9,0,1…9,0,1…となっているので、だいたいその値で推移しながら、実数が、0と1の間を無限に埋めていく形になっている。 例えば、小数点以下、一恒河沙の一恒河沙乗番目が2、一阿僧祇の一阿僧祇乗番目が3、一那由他の一那由他乗番目が4の 0.1…2…3…4… のような無理数について、この並びの途中までのものしかないとしたら、ではどこまでのものならあるのか。0.1…2か、0.1…2…3か、0.1…2…3…4か。実際には「途中まで」などということはなく、つまりこの列にこの無理数は存在し、この任意の無理数が存在するなら(0と1の間の)すべての無理数が存在するのである。で、この表は左右が対称的になっているから、右に無限小数が存在するなら左には無限桁の自然数が存在するのである。 有限桁の自然数を重複することなく無限に並べることができないのと同様に、有限小数を、重複することなく無限に並べることはできない。この列は0と1の間の実数を整列させたものであり、この列に存在しない(0と1の間の)実数は存在しない。 で、すべての実数を整列させると 0,0.1,0.2…0.9,0.01,0.11,0.21… 1,1.1,1.2…1.9,1.01,1.11,1.21… 2,2.1,2.2…2.9,2.01,2.11,2.21… ・ ・ ・ (0),-0.1,-0.2…-0.9,-0.01,-0.11… -1,-1.1,-1.2…-1.9,-1.01,-1.11… -2,-2.1,-2.2…-2.9,-2.01,-2.11… ・ ・ ・ となるので、すべての自然数とすべての実数を1対1に対応させると、 1→0 2→0.1 3→-0.1 4→1 5→-1 6→2 7→-2 8→1.1 9→-1.1 10→0.2 11→-0.2 12→0.3 13→-0.3 14→1.2 15→-1.2 16→2.1 17→-2.1 18→3 19→-3 ・ ・ ・ のようになる。 ところでそれでも従来の考えが正しい場合、循環小数と非循環小数の個数に差が出る本質的な原因、両者の違いは何なのか。明確な違いは「整数比で表せるか表せられないか」だが、循環小数と非循環小数をそれぞれ循環数列と非循環数列に置き換え(今問題にしているのは個数であり、小数点を取り除いても個数は変わらない)れば整数比は関係なくなるわけだし。単なる数字の組み合わせに過ぎない同じ無限数列でありながら、循環させないというだけで個数が多くなるというのは何とも妙な話である。

質問者が選んだベストアンサー

  • ベストアンサー
  • head1192
  • ベストアンサー率20% (159/779)
回答No.1

そもそも「第一列に配置されると仮定される実数は本当にそのとおりなのか」という命題が証明できないという話なのである。

関連するQ&A

  • 実数の個数は無限個?

    0~2までの範囲には,無限(個?)の実数が存在します.いくらでも小さい位の数が考えられるからです. 次に,範囲を半分にして,0~1の範囲を考えても,やはり無限(個?)の実数が存在します.範囲の大きさに限らず,実数の個数は無限個で,等しいのでしょうか?幅が半分に狭まっても,同じく無限個なんて,なんだか変な感じです. それとも0~2の範囲の無限個は,0~1の範囲の無限個の2倍あるけれども,無限に達してしまうと無限以外の呼び方がないので,等しく”無限”という言葉で表現されている,ということなのでしょうか? そもそも無限個などと実数の個数を数えるという発想が間違っているのでしょうか? 考えるほどこんがらかってきます.アドバイスをお願い致します.

  • 新しい実数の構成:自然数→正の実数→実数

    次のような実数の構成はあるのでしょうか? まず、10進法の表記により自然数を構成します。 0を含めます。 0,1,2,3,4,5,6,7,8,9,10, 11、12、・・・ といった数を考えます。 ケタ数は有限です。 順序関係は、まず、ケタの大小を比べ、ケタが同じであれば、最大ケタの数字を比べます。 0~9までの加法と乗法を九九として決め、一般の自然数の加法と乗法は筆算により定めます。 つぎに、小数点以下を考えます。 まず、小数点以下のケタ数が有限なる数を考えても、順序関係と加法・乗法はいままでと同様です。 そして、小数点以下のケタ数が無限なる数を考えます。 順序関係はいままでに追加して、 1=1.000・・・=0.999・・・ といったことなどを考えます。 加法と乗法の筆算も、「左から計算」していけばいいと思います。 このとき、新しく除法も考えられます。 これで、正の実数が構成できたと思いますが、 最後に、小数点以上のケタ数が無限なる数を考えます。 たとえば、 ・・・1212.12  とか ・・・333.333・・・ 順序関係はうまくいきませんが、 ・・・999+1=・・・000=0 と考えると、 ・・・999=-1 といった意味になり、 3をかけることで、 ・・・997=-3 といった意味になったり、 3でわることで、 ・・・333=-1/3 といった意味になったりします。 また、加法と乗法の筆算は、「小数点を中心に左右へ計算」していけば整合性が得られると思われます。 そして、減法・除法も考えられると思います。 つまり、負の実数が構成されたと思います。 結局、左右に無限に続く10進法表記で、実数とその加減乗除が構成されたと思います。 このような、実数の構成はあるのでしょうか? また、不備がありましたら指摘ください。

  • 自然数と小数を1対1対応で対角線論法し無矛盾したい

    自然数と有理数(循環小数)を1対1対応をつけて、対角線論法して無矛盾したいです。 自然数を1から始めることにします。 斜めに拾った数字で数を作ります。 有理数は循環小数なので、0.1010101・・・を0⇔1変換すると 0.0101010・・・になるのでは?が基本アイデアです。 自然数と有理数(循環小数)の一部を2進数表記にして 対応付けを作ります。 リスト1 1:11/12 =0.916666666・・・は2進数表記で  0.1110101010101… 2:8 /12 =0.666666666・・・は2進数表記で  0.1010101010101… 3:11/48 =0.229166666・・・は2進数表記で  0.0011101010101… 4:8 /48 =0.166666666・・・は2進数表記で  0.0010101010101… 5:11/192=0.057291666・・・は2進数表記で  0.0000111010101… 6:8 /192=0.416666666・・・は2進数表記で  0.0000101010101… 7:11/768=0.014322916・・・は2進数表記で  0.0000001110101… 8:8 /768=0.010416666・・・は2進数表記で  0.0000001010101… . n:11/3*2^(n+1){nは奇数}は2進数表記で 0.(0がn-1個続いて)11101010101… n:8 /3*2^(n ){nは偶数}は2進数表記で 0.(0がn-2個続いて)10101010101… . . 1つ目の有理数(循環小数)の小数1桁目を0⇔1反転し、 nつ目の有理数のn桁目を0⇔1反転して 対角線論法で作った2進数は0.010101010101…です。 でもリスト1に数がないです。 2つ目と3つ目の間に0.0101010101010…を入れると、 対角線論法で作った2進数が変わってしまい、うまくいきませんでした。 しょうがないので一桁づらしてリスト2を作ります。 リスト2 1:11/24 =0.4583333333・・・は2進数表記で  0.0111010101010… 2:8 /24 =0.3333333333・・・は2進数表記で  0.0101010101010… 3:11/96 =0.1145833333・・・は2進数表記で  0.0001110101010… 4:8 /96 =0.0833333333・・・は2進数表記で  0.0001010101010… 5:11/384 =0.0286458333・・・は2進数表記で  0.0000011101010… 6:8 /384 =0.0208333333・・・は2進数表記で  0.0000010101010… 7:11/1536=0.0071614583・・・は2進数表記で  0.0000000111010… 8:8 /1536=0.0052083333・・・は2進数表記で  0.0000000101010… . n:11/3*2^(n ){nは奇数}は2進数表記で 0.(0がn-1個続いて)01110101010… n:8 /3*2^(n+1){nは偶数}は2進数表記で 0.(0がn-2個続いて)01010101010… となって、リスト2の2つ目にリスト1から対角線論法で作った数が出てきます。 なんとなく自然数と有理数の一部が対応したような感じがします。 リスト1とリスト2個別にみれば 単調増加なので同じ有理数に、違う自然数が対応してるような 感じがします。 ・基本的に誤りでしょうか? ・リストが2つに分かれちゃいましたが1つにまとめられますか? ・有理数全体の有限小数でつまり、循環のパターン110とか001とか がたくさんあっても対角線論法で、無矛盾するためには どうすればよいでしょうか?

  • 有理数と無理数について

    「有理数は有限小数または循環小数となり、無理数は循環しない無限小数となることを示せ」という問いに関してアドバイスを下さい。   私的に考えた解答を書いてみます。  有理数とは、mおよびnが整数である時、m/nを有理数と呼ぶ。つまり、有限小数または循環小数が分数であるならば、有理数は有限小数または循環小数と言える。 例えば循環小数A=0.12121212・・・・を分数にする。 (10xA)-A=(12.12121212・・・)-(0.12121212・・・)     9A=12      A=4/3 となり、循環小数Aは分数となり有理数は有限小数または循環小数である。・・・・・どうでしょうか? 「無理数が循環しない無限小数である」というのは実数数において有理数以外のものが無理数だと認識している私は、分数表示できない数は無理数である・・としか示せないので、なんだか上手に表現できません。 アドバイス待ってます。

  • 自然数と偶数の一対一対応について

    自然数の中から小さい方から順番にn個取り出した集合をAとし、 正の偶数の中から小さい方から同様に、同じ数だけ取り出した集合をBとします (要は自然数と正の偶数の一対一対応です) A={1,2,3,4,5, ...n} B={2,4,6,8,10,...2n} (AとBは同じ数) ここで、あるnの時の"Aには存在しないBの要素(値)の数"を考えます n=1の時、1個 n=2の時、1個 n=3の時、2個 個数だけ上げていくと、 1,1,2,2,3,3,4,4,5,5,.....と続きます "Aには存在しないBの要素の数"は、nの数に対して単調増加しており、 全てのnにおいて、少なくとも1以上であるように見えます また、nが無限大になった時でも、"Aには存在しないBの要素の数"は1以上あるようにしか思えません nが無限の時、Aを自然数全体の集合、Bを正の偶数全体の集合と呼ぶとします。 nが無限の時でも、Aに含まれないBの要素が存在します。 言い換えれば、自然数(=A)ではない正の偶数が存在するということです。 (もしそうなら最大値の存在が示せそうな気がしますし、現時点で私はそれが正しいように思います) この考えで、どこか間違いがあれば教えてください

  • 0~1の間にある実数と実数全体にある実数の個数は同じ?

    「0~1の間にある実数と実数全体にある実数の個数は同じ。」・・少しニュアンスが違うかも知れませんが、先日数学の先生がこんなことを話してくれました。このことを先生は次のように説明してくれました。数直線上の0~1を半球面とみたて、その半球面上に光源をおき光を放射する。すると半球面上に一対一で光源が実数に対応する。次いで0~1の範囲で作った半球面を取り除けば実数全体にその光源が対応し、よって0~1の間にある実数と実数全体にある実数の個数は同じになる。この話を聞いて、なんだかだまされているような気がしました。本当に「0~1の間にある実数と実数全体にある実数の個数は同じ。」といえるのでしょうか?他にこれを証明する方法を知っている方いらっしゃったら教えてください。

  • 有理数と実数とではどちらが多いか

    有理数も実数も無限に多く存在しますよね?上限も下限も無いですし。 私は実数の方が有理数より多く存在すると思うんですけど、実際のところはどうなんでしょうか?どちらも無限にあるから、なんともいえませんでしょうか?これって、証明とかされてるんですか?だとしたら、わかり易く教えていただきたいです。ご教授お願いします。

  • 実数の次元

    1.実数Rが有理数Q上の線形空間とみなすことを示す。 2.その時の、次元は無限であることを示す。 上記を示したいのですが、 1.は線形空間の性質を用いて示すことができました。 それで、2.を示したいのですが、 実数Rの次元が無限であることは 任意のn(n:自然数)に対して、n個の一次独立なベクトルが存在すること示せばいいと思ったのですが、実際どこから始めていいかわかりません。 教えてください。

  • 実数の無限と自然数の無限の違い

    こんにちは。 タイトルの通り、実数の無限と自然数の無限の違いについて教えてくださいませんか? 大好きな数学の先生に訊かれたので、どうしても答えたいんです。(よこしまな理由でスミマセン・・・ 宜しくお願い致します。

  • 有理数無理数の定義とはなにか答えられる方いませんか?

    有理数や無理数はどのように厳密に定義されるのですか? 有理数は2つの整数の比である。 循環する無限小数である。 無理数は循環しない無限小数である。 などを耳にしますが、(無限)小数の定義は何?とか思うのですが そのように考えるのはおかしいでしょうか? 自然数や整数を定義する際に用いる言葉で有理数が定義されるべきではないのですか!? 高校生などに教える際の有理数や無理数の定義が知りたいのではなく。 どのような過程を経て、これらの数は矛盾なく定義されるのか"詳しく"知りたいです。 自然数から整数を構成して、そこから有理数→実数(無理数)という流れですよね。 こうゆうのは"群"などの話になるんでしょうか? 知っている方、回答よろしくお願いします! あと、この質問文のような内容が独学で勉強できる本でオススメなものがあれば、ぜひ教えていただきたいです。