• ベストアンサー

級数の収束、発散定理の証明について

閲覧ありがとうございます。 私の使っている微積分の参考書に以下のような定理が記載されているのですが、 http://i.imgur.com/jaIUgNW.jpg u_nは一般項を表しています。 この(ロ)のiv、vの証明が分からずに困っています。使うことはできますし、類題もだいたい解けるのですが、大元の定理の証明が分からないため非常にもやもやする次第です(この参考書自身にも証明方法は乗っていませんでした。) どなたかこの定理((ロ)のiv、v)の証明の方法、もしくは証明が乗っているサイトを知っていましたら、教えてください。 お待ちしています。どうぞ解答よろしくお願いします。

質問者が選んだベストアンサー

  • ベストアンサー
回答No.1

まず写真の注に書いてあるように Σ1/n^s がs≦1で発散、s>1で収束を使います。その証明は http://www1.bbiq.jp/nagamine/math/3/pdf/series02.pdf (iv)lim nUn=L>0 ということは、任意のε>0に対して、正の整数Nが存在して、 n>Nならば nUn>L-ε。ε=L/2として、nUn>L/2 となる。 L=∞としても、定義から、上と同様な条件で nUn>M となる Mが存在する。 前の式手 M=L/2と置けば、統一的に議論できる。 つまり、Σ[n=1,∞]Un >Σ[n=N+1,∞]Un >MΣ[n=N+1,∞](1/n)・・(1) ところが Σ[n=1,∞](1/n)→∞ ということは、そこから有限値Σ[n=1,N](1/n) を引いても発散する。つまり、Σ[n=N+1,∞](1/n)も発散する。 ゆえに、(1)から結論を得る。 (v)同様に n^2Un<L+ε=1.5L=M Σ[n=N+1,∞]Un < MΣ[n=N+1,∞](1/n^2) < MΣ[n=1,∞](1/n^2) 右辺は収束。したがって、左辺も収束。それに、有限値、Σ[n=1,N]Un を加えても、有限、となり、Σ[n=1,∞]Un は収束する。

koutyatosuugaku
質問者

お礼

感動しました。ありがとうございました!

関連するQ&A

  • ガウスの発散定理の証明について

    ガウスの発散定理の証明の途中で分からないところがあり質問させてもらいました。 入力方法がわからない文字があったため写真でアップしました(申し訳ないです) 写真で示しているように?の部分が分かりません. 普通に積分するのではないのでしょうか? どなたか解説のほうお願いします

  • 証明せよ のみ 2項定理とはないので。

    等式 2^5=5C0+5C1+5C2+5C3+5C4+5C5 を証明せよ。  左辺=32  右辺=1+5+10+10+5+1=32  よって,等式は成り立つ。  解答には2項定理を使っていました。

  • ストークスの定理の証明について。

    お世話になります。よろしくお願いします。 ストークスの定理の証明について教えてください。 ストークスの定理の証明は、 http://www.iwata-system-support.com/CAE_HomePage/vector/vectana14/vectana14.html このHPのように、「xy平面に平行な微小長方形を考え、そこで定理が成立するので、 任意の図形でも成り立つ。」としているものが多いと思います。 けれど、微小長方形に平行な平面の座標が(u, v)と変わると、 定理の 「∫_(C)(F→)・(x→) = ∫∫_(S)rot(F→)・d(S→)」・・・(1) のF(x,y,z)もG(u,v)と関数が変わってしまうので、 「∫_(C)(G→)・(l→) = ∫∫_(S)rot(G→)・d(S→)」を変ってしまうので、 (u,v)から(x,y,z)に変換し直す必要があると思うので、それほど単純に明らかではないと私は思うのですが、どうでしょうか? 変換の方法などももし分かりましたら、合わせて教えて頂けると助かります。 よろしくお願いいたします。

  • ガウスの定理・・・?

    「ガウスの定理を証明せよ」 という問題が出されたのですが、参考書などに取り上げられているガウスの定理の表記と、命題としてとりあげているガウスの定理の表記がやや違うのです。 参考書→ ∫[v](divA)dV=∫[s](A・dS)  ([ ]の中はインテグラルの右下のVとS、Aはベクトル場、dSのSもベクトル) 命題→  ∫[v](divA)dV=∫'[∂V](A・dS) (∫'は線積分の一周したやつ。∫の中央に○のついた。) どちらも左辺は一致するのですが、右辺がよくわかりません。特に命題の右辺でなぜ線積分が出るのか?なぜ積分の範囲が∂Vなのか?全くわかっていません。お願いします。

  • 有界閉区間であることの証明

    閲覧ありがとうございます。 以下の問題が分かりません。 http://i.imgur.com/NCS1q3U.jpg 恥ずかしながら、どのように解けばいいか、解答の方針すら立たない状況です。 特に、iに関しては証明するまでもなく当たり前ではないか?と思ってしまいます。 分かる方、どうか教えていただけないでしょうか。解説の方、よろしくお願いいたします。

  • フーリエ級数収束定理とリーマン・ルベーグの定理

    フーリエ級数収束定理の証明を考えているのですが、ある疑問が出て、証明にたどり着けません。 問題の根本はリーマンルベーグの定理から来るものです。 フーリエ級数収束定理の証明を考えると、、最終的に、以下の式の証明を考えなければならないと分かりました。 lim[n→∞]{∫[-T/2→T/2]{(f(u+t)-f(t))/sin(ωu/2)*sin((n+1/2)ωu}du}=0 (ω=2π/T) …(1) この証明にリーマンルベーグの定理を用いるのですが、困った事がおきました。 フーリエ級数収束定理とは次のような定理です。 周期Tの周期関数f(t)が「区分的に滑らか」であるとき、f(t)のフーリエ級数代n部分和S[n](t)に関して、次の極限式が成り立つ。 lim[n→∞]{S[n](t)}=f(t) …(2) (ただし、不連続点では、[右辺]={f(t-0)+f(t+0)}/2) 「区分的に滑らか」と「区分的に連続」の定義は次のようになります。 (※)「区分的に滑らか」…有限個の微分不可点(傾きが急変する点や不連続点)t[k](k=1,2,3,…,n)が存在するもののそれ以外の点では連続かつ有界。また、 tkの近傍(t[k]±0)において、t[k]-0 における左側微分係数(f'-(t[k]-0))及び、t[k]+0 における右側微分係数(f'+(t[k]+0))が存在する。 (微分不可点を除いて、関数とその導関数が有界であれば区分的に滑らかであるといえる。) (※)「区分的に連続」…有限個の不連続点tkを除いて連続かつ有界。また、tkにおける左側極限値 f(t[k]-0) 及び、右側極限値 f(t[k]+0) が存在する。 lim[n→∞]{∫[-T/2→T/2]{(f(u+t)-f(t))/sin(ωu/2)*sin((n+1/2)ωu}du}=0 ((1)式) が成り立つことを示すには、リーマン・ルベーグの定理(補題)を使うと思います。このリーマン・ルベーグの定理とは、 関数f(x)が区間[a,b]で、「ある性質」を持つとき、次の極限式が成立する。 ・lim[n→∞]{∫[a→b]{f(x)sin(nx)}=0 …(3) ・lim[n→∞]{∫[a→b]{f(x)cos(nx)}=0 という定理です。最終的には、このリーマン・ルベーグの定理(補題)が証明でき、(1)式に応用することができれば良いのではないかという結論に至りました。 リーマン・ルベーグの定理の証明について、いくつかのサイトを参考にしたのですが、f(x)が持つ「ある性質」の部分が統一されておらず、 ・区分的に滑らか ・区分的に連続 の2通りの流儀があるようでした。 リーマン・ルベーグの定理の成立条件として「f(x)が区分的に滑らか」を採用した場合、 ∫[a→b]{f(x)sin(nx)}=[a→b](1/n)[-f(x)cos(nx)]+∫[a→b](1/n){f'(x)cos(nx)} から、f(x)及びf'(x)が[a,b]で有界ならば、n→∞としたとき零になり、リーマン・ルベーグの定理が成立することが分かります。 これを(1)式に対して適用します。(3)式のf(x)は、(1)式では、(f(u+t)-f(t))/sin(ωu/2)です。 (f(u+t)-f(t))/sin(ωu/2)=g(u) とおくと、g(u)およびg'(u)が有界であることを言うことが必要になります。 g(u)=(f(u+t)-f(t))/u*u/sin(ωu/2) , lim[u→0]g(u)=2/ω*f'(t) より、 [-T/2≦u≦T/2]において、f(t)及びf'(t)が発散しなければ、つまりf(t)が周期T内で「区分的に滑らか」ならば、g(u)は有界であることが言えそうなのです が、g'(u)が[-T/2≦u≦T/2]で有界になることが自分には証明できませんでした。もし証明できるならば教えてください。 一方で、リーマン・ルベーグの定理の成立条件として「f(x)が区分的に連続」を採用した場合ですが、この定理の証明に http://tmlaboratory.at-ninja.jp/doc/Riemann-Lebesgue_lemma/node3.html http://homepage3.nifty.com/rikei-index01/ouyoukaiseki/riemanrubeg.html を参考にしながら次のように検討しました。 区分的に連続の関数f(x)が閉区間[a,b]で有限個(M個)の不連続点(x=t[k](k=1,2,…,M))を持つとする。 [a,b]内で連続となる区間はM+1個できる。この連続区間を、取りうるxの小さいほうから順にT[k](k=1,2,…,M,M+1)と書く。 各区間T[k]の範囲は、 T[k]:[t[k-1]≦x≦t[k]] (k=1,2,…,M+1) (ただし、t[0]=a,t[M+1]=b) 各連続区間T[k]上の連続関数をf[k](x)(k=1,2,…,M+1)とする。 f(x)は[a,b]で有界だから |f(x)|≦F , |f[k](x)|≦F …(4) を満たす実数Fが存在する。 区間T[k]上でf[k](x)に対するリーマン・ルベーグの定理が成り立つことが言えれば、 [a,b]上のf(x)に対するリーマン・ルベーグの定理が成り立つことが言える。 f(x)の任意の連続区間T[k]=[t[k-1],t[k]]をN等分し、T[k]上の分割点を小さい方より、 t[k-1]=x[0]<x[1]<x[2]<…<x[l-1]<x[l]<…<x[N-1]<x[N]=t[k] とおく。 分割した小区間の長さを⊿xすると ⊿x=x[l]-x[l-1] (l=1,2,…,N) =(t[k]-t[k-1])/N すると求める積分は、 ∫[t[k-1]→t[k]]{f[k](x)sin(nx)}dx=Σ[l=1,N]{∫[x[l-1]→x[l]]{f[k](x)sin(nx)}dx} …(5) となる。このときxの範囲は、(x[l-1]≦x≦x[l])である。 (5)式に対し、その大小関係を考えていく。 |∫[t[k-1]→t[k]]{f[k](x)sin(nx)}dx| ≦Σ[l=1,N]{∫[x[l-1]→x[l]]|f[k](x)-f[k](x[l])|・|sin(nx)|dx+|f[k](x[l])|・|∫[x[l-1]→x[l]]{sin(nx)}dx|} …(6) |sin(nx)|≦1 |f[k](x)|≦F より (6式)≦Σ[l=1,N]{∫[x[l-1]→x[l]]|f[k](x)-f[k](x[l])|・1・dx+F|∫[x[l-1]→x[l]]{sin(nx)}dx|} ≦Σ[l=1,N]{∫[x[l-1]→x[l]]|f[k](x)-f[k](x[l])|dx+F/n*(|cos(nx[l-1])|+|cos(nx[l])|)} …(7) |cos(nx[l-1])|≦1 |cos(nx[l])|≦1 より (7式)≦Σ[l=1,N]{∫[x[l-1]→x[l]]|f[k](x)-f[k](x[l])|dx+2F/n} =Σ[l=1,N]{∫[x[l-1]→x[l]]|f[k](x)-f[k](x[l])|dx}+Σ[l=1,N]{2F/n} …(8) f[k](x)の連続性から (x[l-1]≦x≦x[l])の範囲のx、及び任意の正の実数εに対して、 |x-x[l]|≦⊿x=x[l]-x[l-1]=(t[k]-t[k-1])/N ならば |f[k](x)-f[k](x[l])|≦ε を満たす⊿xがただ一つ定まる。このとき分割数Nも適切に取る。 (8)式に対し (8式)≦Σ[l=1,N]{∫[x[l-1]→x[l]]{ε}dx}+2NF/n =Σ[l=1,N]{ε(x[l]-x[l-1])}+2NF/n =Nε(x[l]-x[l-1])+2NF/n =ε(t[k]-t[k-1])+2NF/n よって |∫[t[k-1]→t[k]]{f[k](x)sin(nx)}dx|≦ε(t[k]-t[k-1])+2NF/n …(9) (9)式について 2NF/n≦ε となるようにnを大きく取れば |∫[t[k-1]→t[k]]{f[k](x)sin(nx)}dx|≦ε(t[k]-t[k-1])+2NF/n ≦ε(t[k]-t[k-1])+ε =ε(t[k]-t[k-1]+1) 最終的に |∫[t[k-1]→t[k]]{f[k](x)sin(nx)}dx|≦ε(t[k]-t[k-1]+1) …(10) の関係が言える。 参照したサイトでは、εは任意に取ることができるから、n→∞とすればε→0より lim[n→∞]|∫[t[k-1]→t[k]]{f[k](x)sin(nx)}dx|=0 となり、リーマン・ルベーグの定理が成り立つと結論付けていますがε→0とするとき、 ∀ε>0,∀x[l]>0∈T[k],∃⊿x>0 s.t.∀x∈⊿x=x[l]-x[l-1], |x-x[l]|≦⊿x⇒|f[k](x)-f[k](x[l])|≦ε となるように⊿xを決めているから、ε→0 とするとき同時に ⊿x→0 になり、分割数Nを∞にする必要がでてきます。 結局はn→∞,ε→0としても、⊿x→0,N→∞としなければならず、 2NF/n≦εの関係からlim[n→∞]{2NF/n} (≦ε) は零に収束しないような気がします。 どうすれば答えが導けるでしょうか。

  • 定理の証明

    テイラーの定理・展開で躓いた部分あります。力不足かな・・・先に進めないので質問させてください。 【テイラーの定理の証明】 f(xは、n≧0、[a,b]でn+1階微分可能で、x,x0∈[a,b]とする)  f(x)=Pn(x)+Rn+1(X)…(1)  Pn(x)=f(x0)+[(x-x0)/1!]f'(x0)+…+[(x-x0)^n/n!]f^(n)(x0)…(2) ↑                         n階微分 Rn+1(x)=(1/n!)∫(x-t)^n f^(n+1)(t) dt (積分範囲は、x0からx)…(3) ここでの証明では、(3)-(1)を得るために恒等式   f(x)=f(x0)+∫f'(t)dt (積分範囲は、x0からx) と(1)の微分結果を利用するようです。 様々な参考書を見たのですが、この方法がまったく意味不明なんです。説明不足な点があるかと思いますが、回答をいただければと思います。

  • フェルマの小定理の証明方法について

    フェルマの小定理の証明は、ふつうは、二項定理と数学的帰納法、または、オイラーの定理を使うようです。以下の証明で、(式a)から(式b)に移るのは妥当なのか、よくわかりません。 [蛇足] フェルマの小定理より、オイラーの定理の証明のほうが簡単なのは違和感を感じるのですが・・・。フェルマの小定理の簡明な証明方法があったら、それも教えてほしいです。 ●オイラーの定理 (a,m)=1のとき    a^(φ(m))≡1 (mod m) 【フェルマの小定理】 a^(p-1)≡1 (mod p)  ただし、aは正の整数(←条件を、少し制約しました。)、pは素数、aとpは互いに素((a,p)=1) とする。 ■証明 数学的帰納法を用いる。 (1)a=1 のときは明らか。 (2)a=k のとき成り立つと仮定して、a=k+1のとき成り立つことを証明する。 言い換えると、mod p において、 k^p≡k ⇒ (k+1)^p≡k+1 を証明すればよい。 以下、合同式は mod p の場合のことを指す。 仮定より、 (k)^p≡k (k)^p-1≡k-1 F(k)=k^(p-1)+k^(p-1)…+1 とおくと、 (k-1)・F(k)≡k-1 よって、 F(k)≡1 ところで、F(k)はp個の元から構成されており、 p-1 Σ(k^m)≡1          (式a) m=0 と書き直せる。ここで、kをk+1に置き換えるが、加法+と乗法・を交換則、結合則、分配則をみたす演算子*とすると、 p-1 Σ((k)^m*(1)^m)≡1     (式b) m=0 と書ける。これより、  p-1 k・Σ((k)^m*(1)^m)≡k  m=0      p-1 (k*1-1)・Σ((k)^m*(1)^m)≡k      m=0 よって、 (k*1)^p-1≡k 書き直して、 (k+1)^p≡k+1     <証明終>

  • ピタゴラスの定理

    定理(ピタゴラスの定理) {Xn}[Σn=1~N] を内積空間Vの中の正規直交系であるとする。すべての X∈V について   ||X||^2 = Σ[n=1~N]|(X,Xn)|^2 + ||X-Σ[n=1~N](Xn,X)Xn||^2 が成り立つ。 ________________________________ この証明で、内積の性質から   Σ[n=1~N](Xn,X)Xn と X-Σ[n=1~N](Xn,X)Xn は直交である と、参考書に書かれていたのを使って証明したのですが・・・ 肝心の直交であることの証明が上手くいきませんでした。   ( Σ[n=1~N](Xn,X)Xn , X-Σ[n=1~N](Xn,X)Xn )     = Σ[n=1~N]|(Xn,X)|^2 - ||Σ[n=1~N](Xn,X)Xn||^2     = 0 ↑となるハズなのですが・・・、2つの等式が上手く説明できませんでした。 簡単な問題かもしれませんが、力を貸してくれたら幸いです。 また、この定理が何故「ピタゴラスの定理」というのかが分かりません。 協力お願いします。

  • 数学でわからない問題があります。

    帰納法で解くことってできないのでしょうか? 解答例では2項定理を使って解いてますが・・・ 帰納法でやってみたのですが、証明できなかったです。 やり方が違ってたのかもしれないのでお願いしたいです。