• ベストアンサー

一点だけで微分可能な関数

ワイエルストラスや高木貞治などによりいたるところ微分不可能な連続関数が構成されています。それではある領域内の一つの点だけで微分可能で、領域内の他の点では微分不可能であるような一変数連続実関数はそんざいするでしょうか。そのような関数の存在または存在しないという証明があったら教えて下さい。

質問者が選んだベストアンサー

  • ベストアンサー
  • Nandayer
  • ベストアンサー率47% (20/42)
回答No.3

 意外と簡単なような気がしますが・・・。  ψ(x) をいたるところ連続でいたるところ微分不可能な関数とします。  すると、   f(x) = xψ(x) が求める関数になっています。  h ≠ 0 のとき   (f(h) - f(0))/h = ψ(h) だから f(x) は x = 0 で微分可能。  一方 f(x) がある a ≠ 0 で微分可能とすると、ψ(x) も a で微分可能となって矛盾します。  確認お願いします。

grothendieck
質問者

お礼

御回答ありがとうございます。いたるところ微分不可能な連続関数の存在を前提にすれば、Nandayerさんの回答が最も明快だと思います。するとある点で微分可能な時、その点のいくらでも近くに正則でない点がある可能性があることになります。これは重要なことではないでしょうか。

その他の回答 (2)

  • keyguy
  • ベストアンサー率28% (135/469)
回答No.2

心配なのでもっと急減しましょう

grothendieck
質問者

補足

御回答ありがとうございます。もっと急減しなくても収束すると思います。しかし、[0,1]を2分していく点は可算個しかありません。したがって[0.1]にはm/2^n の形に表せない数があり、その点上ではf'(x)が存在するように思います。

  • keyguy
  • ベストアンサー率28% (135/469)
回答No.1

0≦x<1で f(x)=0(x≦a),f(x)≠h・(x-a)(a≦x) なる折れ線を aが2の冪乗分点になるようにhが急速に小さくなるように重ね合わせてf(x)を作る y=x/(1-x)で正実数の範囲に拡大 奇関数になるように実数の範囲に拡大 x=0で微分0他は微分不可能でしょうね? 先の分点とは 1/2 1/4,3/4 1/8,3/8,5/8,7/8 ・・・・・・・・・・・・・・・・ (可附番) 急減とは 1/2,1/4,1/8,1/16,・・・ 等 (上の同一行にhとして1つの数を対応付ける)

grothendieck
質問者

お礼

御回答ありがとうございます。分点を加えながら足していくのは高木関数と似ていますね。xとして2の分点以外の点をとった時、f(x)の微係数は確定しないでしょうか。

関連するQ&A

  • 微分可能でない関数

    微分可能でない関数について学習しているのですが、 例えば連続関数であり、かつ1点で微分可能でない関数はf(x)=|x|などが自分で考え付くことが出来たのですが、 では任意の点の有限個の点の集合、可算個の点を含む適当な集合上で微分不可能な連続関数はどのような構成が考えられますでしょうか? 宜しくお願い致します。

  • 凸関数は連続的微分可能?

    私は専攻が物理な門外漢なので、表現に不備がありまくりだと思うのですが、何とかよろしくお願い致します。 上に凸の関数が  f(λa+(1-λ)b) ≧ λf(a) + (a-λ)f(b)  a,b は任意の実数 λは 0<λ<1 を満たす任意の実数 と定義されているとすると、折れ曲がった部分を持つ関数(例えば、傾き2と傾き1の直線が連続に繋がってる点があるような。つまりそこでは微分不可)も上に凸の関数と言えます。 しかし、  上に凸の関数は、それが定義されている区間の上で連続的微分可能 という定理があるらしいのですが、連続的微分可能ということは、その区間の任意の点で微分可能ということが前提されているのではないでしょうか?しかし、それだと微分不可の点があってもいいという上の主張と矛盾してしまいます。 連続的微分可能は次のような定義で書いてあります。  ある領域で、すべての1階の偏導関数が存在して、それらがすべて連続である関数 1階導関数が存在して、それが連続であるためには、すべての点で微分可能でないとダメだと思うのですが、その辺に間違いがあるのでしょうか…? どうぞよろしくお願い致します。

  • 分布関数で微分不可の点は可算個か

    分布関数は、可算個の不連続点をもつ、というのは有名な命題です。分布関数で、微分不可の点は、可算個でしょうか。不連続であれば、微分不可です。その意味で、こちらの方がもっと強い主張です。 真であるように思われますが、証明ができずに悩んでいます。怖くて、先生には聞けませんし、先輩には優秀な人がいません。よろしくお願いします。

  • 逆関数の微分可能の証明について

    逆関数の微分可能性についての質問なのですが 1変数において y=f(x)が微分可能(何回でも)だとして 逆関数x=g(y)が微分可能(何回でも)になる という証明は逆関数が微分可能ということを証明することで f(x)が何度でも微分可能なので逆関数も何回でも微分可能と証明することができたと言えるのでしょうか? 何回でも微分可能の何回という点を証明する方法がよくわからないのですが教えていただけないのでしょうか.

  • 分布関数で微分不可の点は可算個か (その2)

    たびたび、恐れいります。先ほどは、前提条件を間違っていました。 http://okwave.jp/qa/q8552663.html 分布関数が絶対連続の場合(確率密度関数が存在する場合)、分布関数における微分不可の点は可算個でしょうか。 よろしくおねがいします。

  • 関数の連続、微分、接線、積分

    関数の連続や微分可能な関数などについての理解があいまいなのですが、以下の文章に間違いがあったら指摘くださいますか? 左右両方からxがaに接近するときの微分係数が一致したら、x=aで微分可能 x=aで微分可能ならx=aで連続。  微分可能で直線じゃないならその点においての接線がある。 微分不可能な点では接線は存在しない。 積分は連続している範囲でできる。 連続していない範囲では積分できない。 連続は(数学的じゃないですが)一筆書きでかけるようなのを連続という。数学的にはイプシロンデルタ論法をつかうと思いますが今は省略します。 f(x)が範囲Mで微分可能ならf '(x)は範囲Mでさらに微分可能。これは何回でも可能で、多項式関数の場合は最終的に0になる。 たとえばf(x)=|x| はすべての実数において連続だがx=0で微分できない。 xが0にちかづくときプラスからでもマイナスからでもf(x)は0になりかつf(0)が0であるから連続 xが0に近づくときプラスからとマイナスからの接近による微分係数は順に1,-1なので、微分できない。微分できないのでx=0における接線は存在しない。 回答よろしくお願いします。

  • 二回しか微分可能でない多変数関数の極値判定について

    2変数の場合は、極値判定条件は2回連続微分可能を仮定するだけで証明できます。 ヘッシアンを用いた一般的な場合の証明で、は三回連続微分可能を仮定した証明しか見つからないのですか、原理的には二回連続微分可能の仮定で証明可能なはずなのですか、どこかにそれを記したものはないでしょうか?

  • ある点で連続な関数と連続でない関数について

    表題の通りですが「ある点で連続な関数と連続でない関数」には それぞれどのような例がありますでしょうか? 可能でしたらその簡単な理由もお教え頂けると助かります。 またついでになりますが「微分可能な関数と微分可能でない関数」についても同じように例と簡単な理由が頂ければ助かります。 参考書等見たのですがなかなか適当な答えが見つからず困っています。 どうぞ宜しくお願い致します。

  • 至る所微分不可能な凸関数について

    至る所微分不可能な下に凸な連続関数は存在しますか?

  • 微分可能について

    「f(x)がx=aで微分可能ならば、f(x)はx=aで連続である」・・・(*) ことを証明せよ。という問題があるが、そもそもx=aで微分可能であることは f(x)がx=aで連続なときに定義されることだから、x=a で不連続なら微分を考えること もできないから、意味がないように思うのですが、どうなのでしょうか。 もう一つの疑問点・・・f(x)=x^2 (xが0でないとき),f(x)=1(xが0のとき)の不連続な関数f(x)が あるとき、微分したf'(x)を図形的にみるとf'(x)は接線の傾きをあらわしているから、x->-0 のとき、f'(x)->0,x->+0のとき、f'(x)->0となるのでx->0のとき、f'(x)=0となり、f'(0)が存在し (*)に反するように思うのですが、考え方のどこが間違っているのか、教えてください。 定義にしたがうと、lim[x->-0]{f(x)-f(0)}/(x-0)は無限になり存在しない。x->+0のときも同様。 だから不連続なときは、微分可能でない((*)の対偶)は正しいことが示せるが・・・・。