• ベストアンサー

二回しか微分可能でない多変数関数の極値判定について

2変数の場合は、極値判定条件は2回連続微分可能を仮定するだけで証明できます。 ヘッシアンを用いた一般的な場合の証明で、は三回連続微分可能を仮定した証明しか見つからないのですか、原理的には二回連続微分可能の仮定で証明可能なはずなのですか、どこかにそれを記したものはないでしょうか?

質問者が選んだベストアンサー

  • ベストアンサー
  • alice_44
  • ベストアンサー率44% (2109/4759)
回答No.1

C^3 を仮定? ヘッセ行列式を使うとき、変なショートカットを使うのかな? 普通に、C^2 を仮定すれば、二階偏微分が可換で、ヘッセ行列は対称行列になり、 実固有値で対角化可能となる。あとは、固有値の符号を調べるだけ。 特別なことは、何も無い。

KSnake
質問者

お礼

ごめんなさい、普通に出来ました。なんか僕の教科書の書き方が特殊だったみたいですね。

KSnake
質問者

補足

停留点で極小でも極大でもない場合の証明がうまく以下の異のですが。

全文を見る
すると、全ての回答が全文表示されます。

その他の回答 (1)

  • hugen
  • ベストアンサー率23% (56/237)
回答No.2

二回微分可能なら f(x,y)-f(a,b)=1/2*(h∂/∂x+k∂/∂y)^2*f(a,b)+o(h^2+k^2) (h,k)≠(0,0)  なら (h∂/∂x+k∂/∂y)^2*f(a,b)>0 と する。 min[p^2+q^2=1](p∂/∂x+q∂/∂y)^2*f(a,b)=m と 置くと (h∂/∂x+k∂/∂y)^2*f(a,b)≧m(h^2+k^2) よって、 f(x,y)-f(a,b)≧m/2*(h^2+k^2)+o(h^2+k^2)=(m/2+o(1))(h^2+k^2)>0

全文を見る
すると、全ての回答が全文表示されます。

関連するQ&A

  • 二変数関数で陰関数の極値問題

    大学1年です。 今、二変数関数の陰関数の極値問題をやっていて分からない事が生じたので質問させていただきます。 だいたいの部分は理解できたのですが、一つだけ分からない所で 「点x=aがf'(a)=f''(a)=0を満たす場合には、さらに高次の微分係数f^(n)(a)を調べた後に、「極値判定条件」を適用する必要がある。」 とあります。そしてその後の例題に、 「…(省略)、f'''(x)=3/2≠0となり、極値を持たない。」 と言う風になっています。(式が難しいので、具体的な数値は省略させていただきます。) (1)なぜ、高次の微分係数を調べると極値の判定に結びつくのでしょうか? (2)その後の極値判定条件とは何でしょうか?例題を見る限り0になると極値になり得るということでしょうか…? よろしくお願いいたします。

  • 2変数関数の極値の問題です。

    2変数関数の極値の問題です。 次の極値の問題について議論せよ。 f(x,y)=x^4-y^4 という問題で、fx=fy=0を満たす(a,b)でfxx=A,fxy=B,fyy=Cとおいて、極値判定法を考えましたが、この場合、(a,b)=(0,0)だけとなり、B^2-AC=0となって極値の判定ができませんでした。 この場合、どのような方法で示せばよいのでしょうか。 よろしくお願いします。

  • 大至急!2変数の極値の問題で助けてください!

    2変数の極値を求めるとき、 B^2-AC=0のとき判定不能が出た場合 極大値、極小値をもたない事を証明する方法を教えてください! どうなった時が極大値、極小値を持たなくなるのか分かりやすくお願いしますm(_ _)m

  • H(a,b) 二変数関数の極値判定について

    一変数関数で、ある関数f(x)についての2回微分であるf''(x)について f''(x)>0かf''(x)<0かをf'(x)=0の点が極大か極小か判定するために見ることはわかります。 要するに、f(x)の傾きであるf'(x)が今後増加するのか、減少するのかを見て判断するわけです。 ニ変数関数においても同様に、fxxfyy-(fxy)^2=H(a,b) が正か負かで極値判定を行うようなのです。 ただ、このH(a,b)の式の意味がよくわからず困っています。 この式は何を意味しているのでしょうか? どことなくV(x)=E^2(x)-{E(x)}^2 の期待値と分散の関係式を思い出すのですが・・・・

  • 臨界点でHessianが0の時の極値の判定

    微分可能な実多変数関数の臨界点(全ての1回導関数が0になる点)でHessianが0でないときはHesse行列の固有値によってこの点が極値かどうかの判定ができることはよく知られていますが、Hessianが0になるときの判定法を書いてある本は少ないようです。私が考えた結果、次の結論に至りました。 (1)Hesse行列の0以外の固有値に符号が異なるものがあるときはこの点は極値ではない。なぜならば固有値が正の固有ベクトルの方向に関しては極小点となっており、固有値が負の固有ベクトルの方向に関しては極大点となっているから。 (2)Hesse行列の0以外の固有値がすべて同符号で固有値0の空間が1次元であるときは、固有値0の固有ベクトルの方向に関して極値になっているかを調べれば良い。これは1変数関数の極値の判定に帰着するので容易。 (3)Hesse行列の固有値0の独立な固有ベクトルが2個以上のときは、各固有ベクトルの方向に関して調べてもこの点が極値であるかどうかの判定はできない。 そこで、やっと質問ですが、(3)の場合は極値の判定はどの様にしたら良いのでしょうか。

  • 2変数関数の極値

    2変数関数f(x,y)=x^3-(x^2-y^2)/2+xy^2を考える、という問題です。 問題の(3)でf(x,y)の極値を求めよ、と問われたのですが、 D(x,y)=fxy(x,y)^2ーfxx(x,y)fyy(x,y) とおき、z=f(x,y)の停留点(a,b)をもとめて、極値の判定を行ったところ、D(a,b)>0となり f(a,b)は極値ではないとなってしまいました。 ちなみに、停留点は(0,0)になりました。 これは正解なのでしょうか?それとも計算間違いですか? 間違っていたら過程を教えていただけないでしょうか。お願いします。

  • 2変数関数の極値について

    f(x,y)=(x^3)(y^2)の極値を求めよ という問題なのですが、偏導関数が0となる点を調べたところ x軸とy軸という解が出ました。しかし、これをDに代入すると D=0となり、極値の判定ができません。 D=0の場合、関数により対処法が違うということは知っているのですが この場合どうすればいいかわからないのでお力をお借りしたいです。 回答よろしくお願いします。

  • 多変数関数についてです。

    関数について、2つ質問があります。 (1)多変数関数が「滑らか」とはどういうことでしょうか? 1変数関数の場合は無限回微分可能なら滑らかだが、 多変数関数の場合はもっと条件があると言われました。 「無限階微分可能かつ、その導関数が連続」ということでしょうか? (2)Ω={(x*,x**)∈R^2}とします。このとき f(x)=x (x∈Ω) をxで微分する という時の表記は(d/dx)f(x)ではいけないそうです。 どのように表すのが正しいのでしょうか? 微積の本やネットを探しましたが、分かりやすい説明がありませんでした。 どなたかご回答、解説をよろしくお願い致します。

  • 極値判定条件

    2変数関数z=f(x,y)が点P(a,b)の近傍で2回偏微分可能で その第二次偏導関数がすべて連続とする。さらにf(a,b)をxで偏微分したものとf(a,b)をyで偏微分したものがともに0であるとする。 Aをf(a,b)をxで2回偏微分したもの Hをf(a,b)をxとyで偏微分したもの Bをf(a,b)をyで2回偏微分したもの Δ=H~2ーAB とおくとき 1)Δ<0かつA>0ならば関数f(x,y)は点P(a,b)で極小値 2)Δ<0かつA<0ならば関数f(x,y)は点P(a,b)で極大値 3)Δ>0ならば関数f(x,y)は点P(a,b)で極値をもたない ということを教わりました。何か1次変数2次関数の判別式と似ているなぁという感じで覚えることはできるのですが、理論・導出過程がわかりません。 もし分かる方がいらしたらお願いします。

  • 2変数関数の条件付き極値問題

    2変数関数の条件付極値問題について誰か教えてください! u^2+4v^2=0のときu^2+v^2の極値を求めなさい。 …という問題なのですが、ラグランジュ乗数法で(0,1/2)(1,0)と出るところまではわかったのですが、その先がどうしても解けません。 レポート提出の期限が迫る中とても焦ってます、、、 もし解ける方がいらっしゃいましたら、回答していただけるとうれしいです。