• ベストアンサー

微分可能でない関数

微分可能でない関数について学習しているのですが、 例えば連続関数であり、かつ1点で微分可能でない関数はf(x)=|x|などが自分で考え付くことが出来たのですが、 では任意の点の有限個の点の集合、可算個の点を含む適当な集合上で微分不可能な連続関数はどのような構成が考えられますでしょうか? 宜しくお願い致します。

質問者が選んだベストアンサー

  • ベストアンサー
noname#44733
noname#44733
回答No.1

いくらでもできますが、例を挙げてみましょう。 f(x)=|x|+|x-1|+|x-3|といった関数はどうでしょう?

dio_ti_ama
質問者

お礼

ご回答をいただいたにもかかわらず、お礼を申し上げるのが遅くなってしまい申し訳ございませんでした。。 なるほど、確かに記していただいた例のようにいくつでも作ることが出来ますね。 ありがとうございました。

その他の回答 (2)

noname#178429
noname#178429
回答No.3

連続関数で,可算個の点で微分不可能な関数は,存在します. ワイエルシュトラース(K.Weierstrass)が提示した次の関数f(x)がそうです. f(x)=Σ[n=0,∞](a^n)・cos(b^n・x) 0 < a < 1, bは奇数で,ab>(3/2)・π + 1 注:^はべきをあらわす. この関数は,(-∞,∞)で連続で,至る所(可算個の点で)微分不可能です. 詳しくは,岩波書店:数学辞典の微分法のの項を参照して下さい.文献が調べられます. また,不連続関数については,Baire関数も参考になると思います.

dio_ti_ama
質問者

お礼

ご回答を頂いたのも関わらず、お礼を申し上げるのが遅くなってしまい申し訳ございませんでした。 回答のほかに参考文献まで教えていただきありがとうございました。 是非とも参考にさせていただきます。 ありがとうございました。

  • Meowth
  • ベストアンサー率35% (130/362)
回答No.2

任意の点の有限個の点の集合、可算個の点を含む適当な集合上 って意味不明 関数は実数で定義されてるんでしょうね。 有限個の点の集合の関数だったらいたるところ微分不可能でしょう。 実数で定義された関数で 有限、を可算個の点で微分不可能って意味か?

関連するQ&A

  • 分布関数で微分不可の点は可算個か

    分布関数は、可算個の不連続点をもつ、というのは有名な命題です。分布関数で、微分不可の点は、可算個でしょうか。不連続であれば、微分不可です。その意味で、こちらの方がもっと強い主張です。 真であるように思われますが、証明ができずに悩んでいます。怖くて、先生には聞けませんし、先輩には優秀な人がいません。よろしくお願いします。

  • 積分可能、不可能について

    fを[a, b]で定義された単調関数とするときfの不連続点は高々可算個です. 1点集合は零集合であり,零集合の可算和も零集合となるので, fは[a,b]でリーマン可積分といえますよね。 それでは何故f(x)=1/xは[0,1]で定積分不可能なのでしょうか? 不連続な点はx=0の時だけなので、「fの不連続点は高々可算個」という 上の条件を満たしていると思います。 どなたか誤りの指摘、または解説をよろしくお願い致します。

  • 凸関数は連続的微分可能?

    私は専攻が物理な門外漢なので、表現に不備がありまくりだと思うのですが、何とかよろしくお願い致します。 上に凸の関数が  f(λa+(1-λ)b) ≧ λf(a) + (a-λ)f(b)  a,b は任意の実数 λは 0<λ<1 を満たす任意の実数 と定義されているとすると、折れ曲がった部分を持つ関数(例えば、傾き2と傾き1の直線が連続に繋がってる点があるような。つまりそこでは微分不可)も上に凸の関数と言えます。 しかし、  上に凸の関数は、それが定義されている区間の上で連続的微分可能 という定理があるらしいのですが、連続的微分可能ということは、その区間の任意の点で微分可能ということが前提されているのではないでしょうか?しかし、それだと微分不可の点があってもいいという上の主張と矛盾してしまいます。 連続的微分可能は次のような定義で書いてあります。  ある領域で、すべての1階の偏導関数が存在して、それらがすべて連続である関数 1階導関数が存在して、それが連続であるためには、すべての点で微分可能でないとダメだと思うのですが、その辺に間違いがあるのでしょうか…? どうぞよろしくお願い致します。

  • 微分可能なのに導関数が不連続?

    一般にm回微分可能でも(d^m/dx^m)f(x)は連続ではないそうですが(本で読みました。) f(x)が微分可能で、導関数f'(x)が連続でないような関数f(x)の例を教えてください。 傾きが不連続(導関数f'(x)が不連続)なのに滑らか(微分可能)ってのがどうもイメージできないので。

  • 関数の連続、微分、接線、積分

    関数の連続や微分可能な関数などについての理解があいまいなのですが、以下の文章に間違いがあったら指摘くださいますか? 左右両方からxがaに接近するときの微分係数が一致したら、x=aで微分可能 x=aで微分可能ならx=aで連続。  微分可能で直線じゃないならその点においての接線がある。 微分不可能な点では接線は存在しない。 積分は連続している範囲でできる。 連続していない範囲では積分できない。 連続は(数学的じゃないですが)一筆書きでかけるようなのを連続という。数学的にはイプシロンデルタ論法をつかうと思いますが今は省略します。 f(x)が範囲Mで微分可能ならf '(x)は範囲Mでさらに微分可能。これは何回でも可能で、多項式関数の場合は最終的に0になる。 たとえばf(x)=|x| はすべての実数において連続だがx=0で微分できない。 xが0にちかづくときプラスからでもマイナスからでもf(x)は0になりかつf(0)が0であるから連続 xが0に近づくときプラスからとマイナスからの接近による微分係数は順に1,-1なので、微分できない。微分できないのでx=0における接線は存在しない。 回答よろしくお願いします。

  • 一点だけで微分可能な関数

    ワイエルストラスや高木貞治などによりいたるところ微分不可能な連続関数が構成されています。それではある領域内の一つの点だけで微分可能で、領域内の他の点では微分不可能であるような一変数連続実関数はそんざいするでしょうか。そのような関数の存在または存在しないという証明があったら教えて下さい。

  • 陰関数の微分について

    陰関数の微分についてよくわからないところがあるので質問します。 R^2の開集合U上で陰関数f(x,y)=0 (f:R^2→RでfはU上C^1級)が与えられているとする。 両辺の微分を取ると、(∂f/∂x)dx+(∂f/∂y)dy=0となる。という記述がありますが、いまいち理解できません。なぜなら、f(x,y)はU上定義されている関数で微分を取ることはわかりますが、右辺の0はここでは U上恒等的に0、すなわち関数として0という意味ではないので, 右辺の微分を取って等式とするのは変だと思ったからです。 ここを納得するにはどう考えればよいのでしょうか。

  • 微分可能関数の証明

    関数f:R→Rがxバー∈Rで微分可能ならば、fはxバーで連続であることを示しなさい。 わからないので教えてください。 よろしくお願いします。

  • 微分可能について

    「f(x)がx=aで微分可能ならば、f(x)はx=aで連続である」・・・(*) ことを証明せよ。という問題があるが、そもそもx=aで微分可能であることは f(x)がx=aで連続なときに定義されることだから、x=a で不連続なら微分を考えること もできないから、意味がないように思うのですが、どうなのでしょうか。 もう一つの疑問点・・・f(x)=x^2 (xが0でないとき),f(x)=1(xが0のとき)の不連続な関数f(x)が あるとき、微分したf'(x)を図形的にみるとf'(x)は接線の傾きをあらわしているから、x->-0 のとき、f'(x)->0,x->+0のとき、f'(x)->0となるのでx->0のとき、f'(x)=0となり、f'(0)が存在し (*)に反するように思うのですが、考え方のどこが間違っているのか、教えてください。 定義にしたがうと、lim[x->-0]{f(x)-f(0)}/(x-0)は無限になり存在しない。x->+0のときも同様。 だから不連続なときは、微分可能でない((*)の対偶)は正しいことが示せるが・・・・。

  • 連続関数の拡張

    一次元だとやさしすぎますが、 一般のR^dの閉集合F上での連続関数fが与えられたとき それをR^dの連続関数に拡張することはできますか? できるとすればどうすればよいでしょうか。 なお境界点xでfが連続とは 任意のε>0に対してxの近傍B_εが存在して、 y∈B_ε∩F ⇒ |f(x)-f(y)|<ε を満たすこととします。