総ありがとう数 累計4,283万(2014年10月24日現在)

毎月4,000万人が利用!Q&Aでみんなで助け合い!

-PR-
airu-123

明日までの数学の宿題です。

x5乗+x4乗+x3乗+x2乗+x+1


よろしくお願いします。
  • 回答数4
  • 気になる数0

Aみんなの回答(全4件)

質問者が選んだベストアンサー

  • 2013-05-13 22:39:57
  • 回答No.2
等比級数の和と思えば

x5乗+x4乗+x3乗+x2乗+x+1=(1-x^6)/(1-x)

というのは因数分解とみなされないのでまじめにやる。

x^5+x^4+x^3+x^2+x+1=x^4(x+1)+x^2(x+1)+(x+1)=(x+1)(x^4+x^2+1)

x^4+x^2+1=x^4+2x^2+1-x^2=(x^2+1)^2-x^2=(x^2+1+x)(x^2+1-x)

これ以上は実数の範囲では無理なことがわかっている。

答え

x5乗+x4乗+x3乗+x2乗+x+1=(x+1)(x^2+x+1)(x^2-x+1)
  • 同意数0(0-0)
  • ありがとう数0

その他の回答 (全3件)

  • 2013-05-13 22:19:17
  • 回答No.1
ヒントだけ
数学の宿題ならたいてい「小さな数字の整数解」が使われやすい
X=0、1、-1、2、-2などと当てはめていけば たいていそこらでどれかが解になる

元の式を その解(例としてx=2なら (x-2)  )で割れば残りの式が出るので また同様に繰り返す
通報する
  • 同意数0(0-0)
  • ありがとう数0
  • 2013-05-13 22:54:15
  • 回答No.3
f(x) = x^5 + x^4 + x^3 + x^2 + x + 1とおくと、
f(-1) = -1 + 1 - 1 + 1 - 1 + 1 - 1 = 0となることから、
f(x)は(x + 1)で割り切れる(因数定理)。
後は、組立除法か何かを使って、実際に割ってみましょう。
通報する
  • 同意数0(0-0)
  • ありがとう数0
  • 2013-05-13 22:54:19
  • 回答No.4
解き方:「因数定理」+[解の公式]

P(x)=x5乗+x4乗+x3乗+x2乗+x+1 と置きます。

Xに何らかの数字を知れて答えが0になるようにします。

つまり xに-1を代入すると

P(x)=x5乗+x4乗+x3乗+x2乗+x+1 なので

P(-1)=(-1)5乗+(-1)4乗+(-1)3乗+(-1)2乗+(-1)+1 =0となるわけです。

よって、

P(x)=(x-1)(x4乗+x2乗+x)

次に P(x)=x4乗+x2乗+x を 「解の公式」で解きます。

そうしたらP(x)=(x-1){x2乗-(1-√3i)/2}{x2乗-(1+√3i)/2} ゆえに


答え:x5乗+x4乗+x3乗+x2乗+x+1=(x-1)(x^2-1/2+√3i/2)(x^2-x/2+√3i/2)


※実数世界ではなく虚数世界まで範囲を広げることをお勧めします。

まぁ、正解かはご自分で確かめてください。

私も自信がないので………wwww
お礼コメント
みなさんありがとうございます。
何とかわかりました(^^)
投稿日時 - 2013-05-13 22:57:56
通報する
  • 同意数0(0-0)
  • ありがとう数0
  • 回答数4
  • 気になる数0
  • ありがとう数0
  • ありがとう
  • なるほど、役に立ったなど
    感じた思いを「ありがとう」で
    伝えてください

関連するQ&A

その他の関連するQ&Aをキーワードで探す

別のキーワードで再検索する

あなたの悩みをみんなに解決してもらいましょう

  • 質問する
  • 知りたいこと、悩んでいることを
    投稿してみましょう
-PR-
-PR-
-PR-

特集

専門医・味村先生からのアドバイスは必見です!

関連するQ&A

-PR-

ピックアップ

  • easy daisy部屋探し・家選びのヒントがいっぱい!

-PR-
ページ先頭へ