整数係数のmonic polynomialによる異なる素因数を持つ整数の存在

このQ&Aのポイント
  • 任意の整数kに対して、f(m)がk個の異なる素因数をもつような整数mは存在するか
  • f(m)の素因数がp_1, p_2, ..., p_kとなるようなmが存在することを示す
  • 中国の剰余定理を用いて、f(y)がp_1, p_2, ..., p_kのすべてで割り切れることを示す
回答を見る
  • ベストアンサー

任意のkに対し、f(m)がk個の素因数を持つ様なm

f(x)を整数係数のmonic polynomialとしたとき 任意の整数kに対して、f(m)がk個の異なる素因数をもつような整数mは存在するか という問題なのですが、 素数を小さい順にp_1 ,p_2, p_3, ...とし、 f(m)の素因数がp_1, p_2, ... , p_kとなるようなmが存在することを示す。 f(x)は問題文の条件より f(x)=(x-a_1)(x-a_2)....(x-a_n)とおける (a_iは整数) p_iは素数なので互いに素 中国の剰余定理より y≡a_1 (mod p_1) y≡a_2 (mod p_2) y≡a_3 (mod p_3) ... y≡a_k (mod p_k) を満たすyが存在する。 y-a_1≡0 (mod p_1) y-a_2≡0 (mod p_2) y-a_3≡0(mod p_3) ... y-a_k≡0(mod p_k) となるためf(y)はp_1, p_2, ..., p_kのすべてで割り切れる。 間違いがあったら指摘ください。

質問者が選んだベストアンサー

  • ベストアンサー
  • alice_44
  • ベストアンサー率44% (2109/4759)
回答No.2

題意も証明方針も今一つピンとこないのだけれど、 任意の整係数モニック多項式が 整係数一次式の積に分解する…という主張は 明らかに間違い。よって、その証明は正しくない。 反例: x^2 + 2 とか。

nemuine8
質問者

お礼

回答ありがとうございます。一次式には確かに分解できないですね。。。考え直して再度質問します

その他の回答 (1)

  • Tacosan
  • ベストアンサー率23% (3656/15482)
回答No.1

「k個の異なる素因数をもつ」というのは「ちょうど k個」という意味でしょうか, それとも「少なくとも k個」という意味でしょうか? 「f(x)=(x-a_1)(x-a_2)....(x-a_n)とおける (a_iは整数)」のところがわかりません.

関連するQ&A

  • 素因数分解と分数

    以下の問題を解いていて、解答に納得がいかないので教えてください。 問)a_1,...,a_n(n>1)を0でない整数とする。ある整数pと正の整数hとが存在して、 a_1,...,a_nのうちの一つのa_iだけがp^hで割り切れ、他のa_jはどれもp^hでは割り切れないとする。そのとき、 S=1/a_1+1/a_2+...+1/a_n (*) は整数でないことを証明せよ 解)「a_iを割り切る最大のべきをp^k」とし、mをa_1,a_2,...,a_i/p^k,...,a_nの最小公倍数とする。(*)の両辺をm倍すると、右辺のm/a_i以外の項は整数だが、mはp^hで割り切れないのでm/a_iは整数でない。 ここで不思議に思ったのは、「」の部分でなぜ最大のべきを置いたかです。 m'として、a_1,a_2,...,a_i/p^h,...,a_nの最小公倍数としても問題ないと思います。 a_iにp^hで割っていること、p^hの素因数をa_i以外がもたないこと、この二つから、 m'のpの指数はa_iのpの指数(p^k)を超えることはないのではないかと思います。 これで、m'/a_iが整数でないことが示せると思います。 大変長く、わかりにくくなってすみません 何か自分が勘違いしているのか、他に見逃しているところがあるのか教えてください。

  • modを使用した平方根の求め方

    解き方が解からない問題があります。 どれだけ考えても解き方がわからないので、どなたかわかる方教えてください。 【解き方が解からない問題】 大きな素数の積n=pqが与えられた時、nを素因数分解するのは非常に難しい。 整数mと整数y(<m)が与えられた時y=x2(xの二乗) mod mなる整数解xが存在すれば、yは mod mで平方剰余であるという。 xを mod mでのyの平方根という。 mが素数7の時、 12(1の二乗の事です。二乗の書き方がわからなくて・・・)≡1 (mod 7) 、 22(2の二乗) ≡ 4 (mod 7) 32(3の二乗)≡2 (mod 7) 、 42(4の二乗) ≡ 2 (mod 7) 52(5の二乗)≡4 (mod 7) 、 62(6の二乗) ≡ 1 (mod 7) となるので、1、2、4が平方剰余で、各平方剰余には2個の平方根がある。 mが二つの素数の積の場合、4個の平方根がある。 ここまでが参考書に載ってる説明です。 ここから私がわからない問題です。 102(10の二乗) mod 77=23 n = 77 の素因数7と11から素因数の知識を利用してZのmod nでの平方根Sを計算する。 S2(Sの二乗) ≡ 23 mod 7 S2(Sの二乗) ≡ 23 mod 11 上の2つを解いて、mod 77での4つの平方根10、32、45、67を得る。 この2つの式から、何をどうやって計算して、4つの平方根10、32、45、67が導き出せたのかわかりません。 二乗の表記の仕方がわからず、とても見難くなってしまいました。すみません。 乱文になってしまいましたが、どなたかわかる方教えてください。 よろしくお願いします。

  • 任意の自然数m,nについてm^2+n^2=p^2+q^2を満たすような

    任意の自然数m,nについてm^2+n^2=p^2+q^2を満たすような正の有理数p,qは 以前の質問↓ http://okwave.jp/qa/q6158436.html の際に、a^2+b^2=c^2≠0を満たす整数a,b,cを用いて  p=(am+bn)/c, q=(an-bm)/c と表せることを教えていただきました。 これにより求められたp,qは一般には整数ではないですが  m=(ap-bq)/c, n=(bp+aq)/c が成り立ちます。 このことから思ったのですが、x,yが“キリの悪い有理数”のとき a,b,cを上手く選んでやれば  p=(ax-by)/c, q=(ax+by)/c により“よりキリの良い有理数”になると思います。 全てのx,yの組み合わせでは不可能かもしれませんが 可能な組み合わせだった場合、x,yが与えられたときに a,bをどのようにして選べば良いのでしょうか? ※ここで“キリの悪い有理数”とは、 有理数を互いに素な整数を用いた分数で表したときに 素因数が分母にたくさん含まれている数を指すこととします。 “よりキリの良い有理数”とは同様に分母に含まれる 素因数の種類が“キリの悪い有理数”より少ないものとします。

  • 素因数分解の問題

    久々に素因数分解の問題を解いてみようとしたところ、いきなり躓いてしまいました。 二桁の整数nに168をかけると、ある数の二乗になりました。この整数nはいくらになるかという問題です。 168を素因数分解し、n×168=n×2^3×3×7となることは分かります。 これから先、どのように組み立てて解けばよいのか分かりません。 解説では、各素数が偶数個になるように解くと書かれており、ある数の二乗になるため、 n=2×3×7×m^2となっていました。 どうしてこのような式なるのですか? A=A^p×b^q×c^rとなっている時、各指数がすべて偶数(2の倍数)なっていれば、Aは何かの二乗になることは確かめてみました。

  • オイラーの定理(整数)

    nは自然数、aは整数とする。aとnが互いに素な時、a^{φ(n)}≡1( mod n)が成り立つ。 ここでφ(n)は「n以下の自然数でnと互いに素なものの個数を表す」"オイラーの関数"である。 この定理の例証で、例えばn=45=3^(2)*5のときa=7として考えます。 φ(45)=φ(3^2)*φ(5)となり、φ(3^2)=6、φ(5)=4です。 フェルマーの小定理よりmod 5 で、7^φ(45)={7^φ(5)}^φ(3^2)は {7^φ(5)}≡1 (mod 5)より、7^φ(45)≡1 (mod 5 )・・・(1)になり。 次に7^φ(3^2)≡1(mod 3^2)をしるします。フェルマーの小定理より mod 3 で 7^(3-1)≡1なので7^(3-1)=3k+1、 7^φ(3^2)={7^(3-1)}^3=(3k+1)^3=(3k)^3+3C1(3k)^2+3C2(3k)+1 3C1、3C2は3の倍数なので、7^φ(3^2)≡1(mod 3^2)・・・(2)です。 よって、7^φ(45)={7^φ(3^2)}^φ(5)≡1(mod 3^2)となります。 ここからが分からない箇所なのですが、中国の剰余定理から、 (1)かつ(2)⇔7^φ(45)≡■(mod 3^(2)*5)となる■が、1つだけ存在します。と書いてありますが、自分は中国の剰余定理は、m、nを互いに素な自然数とする。 x≡a(mod m)かつ x≡b(mod n)を満たす整数xはmnを法として、ただ1つ存在する。と書いてあることから、割る数が違えば、a,bのように余りもちがう場合に、整数xはmnを法として、ただ1つ存在する。と思っていたのですが、 この例証では、■≡7^φ(45) (mod 5)かつ■≡7^φ(45) (mod 3^2)のような余りが 一緒の場合を同時に満たす■を求めているような気がして、中国の剰余定理があてはまるか不安です。 自分の考えの間違いや、余りが一緒の場合でも中国の剰余定理が使えるかを教えてください。お願いします。 本では、■=1のとき(1)、(2)が成り立つので、■=1だとわかります。 よって7^φ(45)≡1(mod 45 )となることがしるされました。としめくくっています。

  • 因数と素因数およびそれを用いた証明

    他の方の質問に回答しているやりとりの中でどうしても腑に落ちないことがあり、これ以上その方の回答欄に書くわけにもいかないと思い質問します。 「素因数」…ある整数の約数である素数のこと。 「因数」…一つの数または式がいくつかの数または式の積によって形成されている場合、その個々のその個々の数や式、因子。 (いずれも広辞苑より) とあります。 この説明を読む限りでは、素因数⊂因数だと思います。つまり、整数が因数の積で表される時、その因数が素数の時は特に素因数と呼ぶ、と。 ということは、証明においてある整数の因数全体で成り立つことが示せれば、その整数の素因数でも成り立つことは自明だと思うのですが、違うのでしょうか? また、ほとんどの参考書および教科書では、 「ある整数Aと1を除く自然数mにおいて、A^3がmの倍数⇔Aがmの倍数」であることを自明のこととして扱っています(mが素数かどうかに関わらず)。事実私もそうでした。しかし、自明ではないという意見もあるようです。どちらなのでしょうか? 自明であるという意見の方はその理由を、自明でないと言う方は反例をあげて下さい。 長文になりましたが、よろしくお願いします。

  •  高木初等整数論 p85 

    初等整数論で (n/m)は平方剰余のルジャンドルの記号、もしくは,Jacobiの記号とします。水平の-が書けないため。 (記号の説明) φ(m):オイラー関数:mと素である整数の数 Legendreの記号 x^2≡a  (mod.p)が解をゆうするときにaをpの平方剰余、そうでないとき平方非剰余という。 not(a≡0) (mod.p)でないとき、aが平方剰余であるか、非剰余であるかに従って (a/p)=+1または-1 (m/n)の定義 n>1が奇数で,n=pp'p''---が、nの素因数分解でsるとき,(m,n)=1なる整数mに関して (m/n)=(m/p)(m/p')(m/p'')---とする。 右辺は、Legendreの記号 jacobiの記号 (定理) mが平方数でないならば、mを法とするφ(m)個の既約類のうち、半数に属するnに対しては(n/m)=+1、他の半数に対しては、(n/m)=-1 (証明)と続きますが。 mを法とする同一既約類に属するnに対しては(n/m)の値は一定. いまφ(m)個の既約類の代表を(n/m)の値によって+の組と-の組とに分けて、 (+)  a1、―――,an    (a/m)=+1 (-) b1、―――,bn    (b/m)=-1 とする。 a≡1(mod m)であるaなどは+の組に属するが、仮定でmは平方数でないから、-の組も空虚でない。 (質問)mは平方数なら、-の組は空虚は明らかですが、mは平方数でないから、-の組も空虚でないはどうしていえるのでしょうか。わかりやすく説明ください。

  • すごく大きい数を素因数分解する方法について教えてください。

    すごく大きい数を素因数分解する方法について教えてください。 問題:m,nを2以上の整数とする。√2009=m√nのとき、m=(a) n=(b)である この問題の答えがa=49 B=41でした。 解説には√2009=√49×41=7√41と書いてあります。 解き方は、2009が何で割れるか小さい数から順に試すしかないのでしょうか。 なにか早く解く裏ワザなどあったらいいな・・・と思いました。 よろしくお願いします。

  • 素因数分解でわからない問題があります。教えていただ

    けますでしょうか。 勉強していて、下記の問題がどうしてもわかりません。 解答はついているのですが、考え方がわかりません。 教えていただけないでしょうか? 問い 56にできるだけ小さい自然数をかけて、ある整数の二乗にしたい。どんな数をかければよいか? 素因数分解はできるのですが(2の3乗X7)、その後の考え方がわかりません。 ちなみに答えは2X7=14 です。 解説に、56=2の3乗x7=2の2乗x(2x7) よって、2x7=14とありますが、 この解説がまったく理解できません。 2x7=14が何を意味するのかがわかりません。 どう考えればよいのでしょうか? 同じく 360を自然数でわって、ある整数の2乗にしたい。どんな数でわればよいか? という問いも、素因数分解から先の考え方がわからず、解けません。 (答え10,40,90,360)。 どなたか 解き方(考え方)を教えていただけますでしょうか。

  • x^2+y^2=n×pを満たす整数x,y,nが存在する奇素数pについて

    x^2+y^2=n×pを満たす整数x,y,nが存在する奇素数pについて、 a^2+b^2=m×p^2を満たすa,b,mは必ず存在するでしょうか? 換言しますと、奇素数pについて 「x^2+y^2=n×pとなる整数の組x,y,nが存在する」と 「a^2+b^2=m×p^2となる整数の組a,b,mが存在する」は同値でしょうか? 19くらいまでは調べたのですが、普遍的かちょっとわからなくて…