• ベストアンサー

微分方程式の問題です。

次の常微分方程式に関する(a),(b)の問いに答えよ。 常微分方程式は添付画像を参照してください。 (a)G(x)=0の場合、常微分方程式を解き、f(x)を求めよ。 (b)G(x)=2x+5の場合、常微分方程式を解き、f(x)を求めよ。 途中計算も付してください。どうかよろしくお願いします。

質問者が選んだベストアンサー

  • ベストアンサー
  • f272
  • ベストアンサー率46% (8043/17185)
回答No.1
全文を見る
すると、全ての回答が全文表示されます。

関連するQ&A

  • 微分方程式に関する問題です。

     dy/dx = (a+by)(c(x)+d(x)y) ここで、a,bは定数、c(x),d(x)はxの区間Iで連続とする。 (1)この微分方程式は、変数変換y = 1/b(1/z - a)により次の線形微分方程式に変換されるという。 dz/dx = f(x)z + g(x) をf(x),g(x)をa,b,c(x),d(x)を用いて表せ。 (2)a = b = 1,c(x) = x + 2/x , d(x) = xとするとき、微分方程式の一般解を求めよ。 途中の計算などもできれば詳しくお願いします。

  • 次の微分方程式の解を超幾何級数を用いて求めたい

    皆さんよろしくお願いいたします dy/dx =(x-b)^(3a/2)/(x^2+bx) ここで、a, b は定数で常に x>b, x>0, b>0, a>0です。 この微分方程式は、ガウスの超幾何級数で求められるらしい(添付画像参照)のですが、 解き方が分かりません。 解法を途中を含めて教えていただけると助かります。 試しに以下サイトで左辺を積分すると http://integrals.wolfram.com/index.jsp 2(x-b)^(3a/2) {(1-bx)^(-3a/2) 2F1(-3a/2, -3a/2; 1-3a/2; b/x) - (1-2b/(b+x))^(-3a/2) 2F1((-3a/2, -3a/2; 1-3a/2; 2b/(b+x)) } となりました。これはどのように計算すると導けるのでしょうか。

  • 4階の微分方程式の解き方を教えてください!

    問題で与えられる微分方程式は画像として添付しました。 (1) f(x)=0 のとき、この微分方程式の一般解 (2) f(x)=sinx のとき、この微分方程式の一般解 それぞれの求め方を教えていただけませんか? 自分で計算した結果 (1)y=(C1x+C2)cos2x+(C1x+C2)sin2x (A,Bは任意定数)となりました。 間違っているでしょうか?詳しい一般解の導き方を教えてください (2)特殊解をどのようにおけばいいのか分かりません  おき方と解法を教えていただきたいです

  • 微分方程式の問題です。

    以下の問題の解答のチェックをお願いします。 図のyに関する微分方程式について、以下の問いに答えよ。 (a)y=e^zとおき、微分方程式をzに関する微分方程式に書き換えよ。 (b)dz/dx=v とおき、(a)で得られた微分方程式をvについて解け。 (c)微分方程式(1)の一般解を求めよ。 (a) z''-2(z')^2-z'=0 (z'=dz/dx) (b) v=Ce^x/(1-2Ce^x) (c) y=C1・(1-C2e^x)^(-1/2) 特に(c)が自信がありません。。。

  • 常微分方程式

    常微分方程式の定義が良くわかりません。 ウィキペディアの常微分方程式の定義を見ますと、 F(t,x(t),x'(t),...,x(n-1)(t),x(n)(t))=0 と書かれています。 なお、x(n)はxのn階の意味です。 http://ja.wikipedia.org/wiki/%E5%B8%B8%E5%BE%AE%E5%88%86%E6%96%B9%E7%A8%8B%E5%BC%8F すると、x(t)のn乗や定数項が含まれる式は常微分方程式ではないのでしょうか。 よろしくお願いします。

  • 偏微分方程式に関する問題

    偏微分方程式に関する以下の問いに答えなさい。 ある2次元スカラー関数φ(x,y)に対し、流速ベクトルq=(q_x,q_y)が存在し、以下の関係を満たすものとする(q_xとはqに下付きでxということ、q_yに関しても同じ、以下、下付きの文字の前には_を置く)。 ベクトルq=-β(∂φ/∂x, ∂φ/∂y)      (a) さらにスカラーφの時間変化率∂φ/∂tについて、以下のバランス式が成立しているものとする。 -α(∂φ/∂t)=((∂q_x)/∂x)+((∂q_y)/∂y) (b) ただし、x、yは2次元直交(デカルト)座標系、tは時間、α、βは定数、とする。 (1)式(a)を(b)に代入してq_x、q_yを消去し、φを従属変数とする偏微分方程式(直交座標系使用)を導け。 (2)上記偏微分方程式で右辺項を0とした方程式は、特に何と呼ばれるか。 (3)上記(2)の場合に相当する数物理学現象を1つ示せ。 (4)φ=X(x)Y(y)と解の形を仮定し、上記(2)の偏微分方程式に代入し、X(x)、Y(y)それぞれに対する常微分方程式を導け。 最初の(1)問目から躓いています・・・ (a)式より、q_x=-β(∂φ/∂x)、q_y=-β(∂φ/∂y)となり、これを(b)式に代入しました。計算していくと、 α(∂φ/∂t)=β(((∂^2)φ/∂x^2)+((∂^2)φ/∂y^2))となりました。 答えはこんな感じでいいんですか? それとも、さらに変形するべきなのか・・・ そして、(2)問目です。 まず、名前についてなんですが、斉次方程式(同次方程式)でいいんですか? それとも、放物型とか双曲型とか楕円型とかそのようなことを書いたらいいのか…。 候補としては、一瞬Laplace方程式かなって思ったり・・・ 個人的には斉次方程式かなと思うのですが・・・ そして、0にするというのもいまいちわかっていません。 実際(1)の答えがよく求まっていないので、どこを0にしたらいいのか 微妙というのもあるのですが…。 個人的には、α=0と置くのかなとも思ったのですが・・・ 分からなくなってきました・・・ (3)(4)についても何か教えていただけると嬉しいです。 特に(1)(2)の質問お願いします。 あと、できれば(3)も・・・ 問題数が多く、大変申し訳なく思うのですが、何かヒントだけでもいただけると嬉しいです。

  • 微分方程式の問題です。

    曲線y=f(x)(0<a≦x≦b)上の点P(t,f(t))(a<t<b)における接線をlとし、l上の点でそのx座標がt+1となる点をQとおく。原点をOとして、ベクトルOPとベクトルPQのなす角をθとする。次の問いに答えよ。 (1)cosθをtを用いて表せ。 (2)a=1/4,b=1,f(x)=√xのとき、θが最大となるtを求めよ。 (3)a=1/2,b=2とする。全てのt(1/2<t<2)についてベクトルOPとベクトルPQが直行し、f(1)=√3となるf(x)を求めよ。 という問題です。微分方程式は授業で習っておらず自力で勉強しています。解答がなく、解き方が分からないので教えていただけないでしょうか。よろしくお願いします。

  • 連立微分方程式の問題

    x, u, v,を実数,a, τを実定数とする。次の連立微分方程式を解いてu, vを求めよ。 式は添付画像をご参照ください。 という問題です。 vを消去してuの微分方程式に書き換えたところ d4y/dx4(u)+(4a^2)(d4y/dx4)(u)=0 という式が得られてこの式を解くことができなくて... 私は間違っているのかそれとも別のやり方でやるべきですか。 この連立微分方程式の解き方をご存知の方がいらっしゃいましたら、ご指導お願いします。

  • 微分方程式

    dy/dx-2*x^2*e^x*y+e^x*y^2=2*x-x^4*e^x に対しての次の問のとき方について教えてください (1)x^a が微分方程式の解となるように実数aを求めよ (2) a を(1)で求めたものとする。y=x^a+zを微分方程式に代入して,zの満たす微分方程式を求めよ。 (3)(2)で求めたzの微分方程式を解いて,もとの微分方程式の解yを求めよ (1)についてはa=2という答えだと思うのですが,(2)以降の解き方の手順がわかりません。解法がわかるのであればよろしくおねがいします。

  • 微分方程式の一般解を求めたいです。

    dy/dx = (a+by)(c(x)+d(x)y) ここで、a,bは定数、c(x),d(x)はxの区間Iで連続とする。 (1)この微分方程式は、変数変換y = 1/b(1/z - a)により次の線形微分方程式に変換されるという。 dz/dx = f(x)z + g(x) をf(x),g(x)をa,b,c(x),d(x)を用いて表せ。 ********************************************* これはf(x) = ad(x) - bc(x) g(x) = -d(x) として答えがでました。 ********************************************* (2)a = b = 1,c(x) = x + 2/x , d(x) = xとするとき、微分方程式の一般解を求めよ。 dz/dx = -2z/x -x という式になると思うんですけど一般解をどう導き出していいのか分かりません。よろしくお願いします。